Do you want to publish a course? Click here

Fractal and Transfractal Recursive Scale-Free Nets

89   0   0.0 ( 0 )
 Added by Daniel ben-Avraham
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the concepts of self-similarity, dimensionality, and (multi)scaling in a new family of recursive scale-free nets that yield themselves to exact analysis through renormalization techniques. All nets in this family are self-similar and some are fractals - possessing a finite fractal dimension - while others are small world (their diameter grows logarithmically with their size) and are infinite-dimensional. We show how a useful measure of transfinite dimension may be defined and applied to the small world nets. Concerning multiscaling, we show how first-passage time for diffusion and resistance between hub (the most connected nodes) scale differently than for other nodes. Despite the different scalings, the Einstein relation between diffusion and conductivity holds separately for hubs and nodes. The transfinite exponents of small world nets obey Einstein relations analogous to those in fractal nets.



rate research

Read More

Self-similarity is a property of fractal structures, a concept introduced by Mandelbrot and one of the fundamental mathematical results of the 20th century. The importance of fractal geometry stems from the fact that these structures were recognized in numerous examples in Nature, from the coexistence of liquid/gas at the critical point of evaporation of water, to snowflakes, to the tortuous coastline of the Norwegian fjords, to the behavior of many complex systems such as economic data, or the complex patterns of human agglomeration. Here we review the recent advances in self-similarity of complex networks and its relation to transport, diffusion, percolations and other topological properties such us degree distribution, modularity, and degree-degree correlations.
It is known that the heterogeneity of scale-free networks helps enhancing the efficiency of trapping processes performed on them. In this paper, we show that transport efficiency is much lower in a fractal scale-free network than in non-fractal networks. To this end, we examine a simple random walk with a fixed trap at a given position on a fractal scale-free network. We calculate analytically the mean first-passage time (MFPT) as a measure of the efficiency for the trapping process, and obtain a closed-form expression for MFPT, which agrees with direct numerical calculations. We find that, in the limit of a large network order $V$, the MFPT $<T>$ behaves superlinearly as $<T > sim V^{{3/2}}$ with an exponent 3/2 much larger than 1, which is in sharp contrast to the scaling $<T > sim V^{theta}$ with $theta leq 1$, previously obtained for non-fractal scale-free networks. Our results indicate that the degree distribution of scale-free networks is not sufficient to characterize trapping processes taking place on them. Since various real-world networks are simultaneously scale-free and fractal, our results may shed light on the understanding of trapping processes running on real-life systems.
The evolution and spatial structure of displacement fronts in fractures with self-affine rough walls are studied by numerical simulations. The fractures are open and the two faces are identical but shifted along their mean plane, either parallel or perpendicular to the flow. An initially flat front advected by the flow is progressively distorted into a self-affine front with Hurst exponent equal to that of the fracture walls. The lower cutoff of the self-affine regime depends on the aperture and lateral shift, while the upper cutoff grows linearly with the width of the front.
Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter $q$. We obtain the topological properties of the network including the degree distribution, average path length, diameter, fractal dimensions, and betweenness centrality distribution, which are controlled by parameter $q$. Interestingly, we show that by adjusting $q$, the networks undergo a transition from fractal to non-fractal scalings, and exhibit a crossover from `large to small worlds at the same time. Our research may shed some light on understanding the evolution and relationships of fractal and non-fractal networks.
398 - Yan-Bo Xie , Tao Zhou , 2005
In this letter, we proposed an ungrowing scale-free network model, wherein the total number of nodes is fixed and the evolution of network structure is driven by a rewiring process only. In spite of the idiographic form of $G$, by using a two-order master equation, we obtain the analytic solution of degree distribution in stable state of the network evolution under the condition that the selection probability $G$ in rewiring process only depends on nodes degrees. A particular kind of the present networks with $G$ linearly correlated with degree is studied in detail. The analysis and simulations show that the degree distributions of these networks can varying from the Possion form to the power-law form with the decrease of a free parameter $alpha$, indicating the growth may not be a necessary condition of the self-organizaton of a network in a scale-free structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا