Do you want to publish a course? Click here

Reversing non-local transport through a superconductor by electromagnetic excitations

99   0   0.0 ( 0 )
 Added by Alfredo Levy Yeyati
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductors connected to normal metallic electrodes at the nanoscale provide a potential source of non-locally entangled electron pairs. Such states would arise from Cooper pairs splitting into two electrons with opposite spins tunnelling into different leads. In an actual system the detection of these processes is hindered by the elastic transmission of individual electrons between the leads, yielding an opposite contribution to the non-local conductance. Here we show that electromagnetic excitations on the superconductor can play an important role in altering the balance between these two processes, leading to a dominance of one upon the other depending on the spatial symmetry of these excitations. These findings allow to understand some intriguing recent experimental results and open the possibility to control non-local transport through a superconductor by an appropriate design of the experimental geometry.



rate research

Read More

Although recent experiments and theories have shown a variety of exotic transport properties of non-equilibrium quasiparticles (QPs) in superconductor (SC)-based devices with either Zeeman or exchange spin-splitting, how QP interplays with magnon spin currents remains elusive. Here, using non-local magnon spin-transport devices where a singlet SC (Nb) on top of a ferrimagnetic insulator (Y3Fe5O12) serves as a magnon spin detector, we demonstrate that the conversion efficiency of magnon spin to QP charge via inverse spin-Hall effect (iSHE) in such an exchange-spin-split SC can be greatly enhanced by up to 3 orders of magnitude compared with that in the normal state, particularly when its interface superconducting gap matches the magnon spin accumulation. Through systematic measurements with varying the current density and SC thickness, we identify that superconducting coherence peaks and exchange spin-splitting of the QP density-of-states, yielding a larger spin excitation while retaining a modest QP charge-imbalance relaxation, are responsible for the giant QP iSHE. The latter exchange-field-modified QP relaxation is experimentally proved by spatially resolved measurements with varying the separation of electrical contacts on the spin-split Nb.
A superconductor subject to electromagnetic irradiation in the terahertz range can show amplitude oscillations of its order parameter. However, coupling this so-called Higgs mode to the charge current is notoriously difficult. We propose to achieve such a coupling in a particle-hole-asymmetric configuration using a DC-voltage-biased normal-metal--superconductor tunnel junction. Using the quasiclassical Greens function formalism, we demonstrate three characteristic signatures of the Higgs mode: (i) The AC charge current exhibits a pronounced resonant behavior and is maximal when the radiation frequency coincides with the order parameter. (ii) The AC charge current amplitude exhibits a characteristic nonmonotonic behavior with increasing voltage bias. (iii) At resonance for large voltage bias, the AC current vanishes inversely proportional to the bias. These signatures provide an electric detection scheme for the Higgs mode.
The combination of two-dimensional Dirac surface states with s-wave superconductivity is expected to generate localized topological Majorana zero modes in vortex cores. Putative experimental signatures of these modes have been reported for heterostructures of proximitized topological insulators, iron-based superconductors or certain transition metal dichalcogenides. Despite these efforts, the Majorana nature of the observed excitation is still under debate. We propose to identify the presence of Majorana vortex modes using a non-local transport measurement protocol originally proposed for one-dimensional settings. In the case of an isolated subgap state, the protocol provides a spatial map of the ratio of local charge- and probability-density which offers a clear distinction between Majorana and ordinary fermionic modes. We show that these distinctive features survive in the experimentally relevant case of hybridizing vortex core modes.
In the spin energy excitation mode of normal metals and superconductors, spin up and down electrons (or quasiparticles) carry different heat currents. This mode occurs only when spin up and down energy distribution functions are non-identical, most simply when the two spins have different effective temperatures, and can be excited by spin-polarised current injection into the system. While evidence for spin-dependent heat transport has been observed in a normal metal, these measurements averaged over the distribution function of the electrons. By performing spectroscopy of quasiparticle populations in a mescoscopic superconductor, we reveal distribution functions which are strongly out-of-equilibrium, i.e. non-Fermi-Dirac. In addition, unlike in normal metals, the spin energy mode in superconductors is associated with a charge imbalance (different numbers of hole- and electron-like quasiparticles) at the superconducting gap edge, in finite Zeeman magnetic fields. Our spectroscopic technique allows us to observe this charge imbalance and thus unambiguously identify the spin energy mode. Our results agree well with theory and contribute to laying the foundation for spin caloritronics with superconductors.
Quasiparticle (qp) poisoning is a major issue that impairs the operation of various superconducting devices. Even though these devices are often operated at temperatures well below the critical point where the number density of excitations is expected to be exponentially suppressed, their bare operation and stray microwave radiation excite the non-equilibrium qps. Here we use voltage-biased superconducting junctions to demonstrate and quantify qp extraction in the turnstile operation of a superconductor-insulator-normal metal-insulator-superconductor single-electron transistor. In this operation regime excitations are injected into the superconducting leads at a rate proportional to the driving frequency. We reach a reduction of density by an order of magnitude even for the highest injection rate of $2.4times 10^8$ qps per second when extraction is turned on.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا