Do you want to publish a course? Click here

Dirty Peierls transitions in alpha-Uranium

99   0   0.0 ( 0 )
 Added by Susan Cox
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We point out that a recent model for the heat capacity of alpha-U that invokes CDW collective modes is unphysical. We show instead that the features in the heat capacity of both single-crystal and polycrystalline alpha-U can be accounted for by a number of Peierls transitions that are subject to increased disorder in the polycrystalline sample.



rate research

Read More

98 - S. Cox , J.C. Lashley , E. Rosten 2006
The nature of the phase transitions in La$_{1-x}$Ca$_x$MnO$_3$ and Pr$_{0.48}$Ca$_{0.52}$MnO$_3$ has been probed using heat capacity and magnetisation measurements. The phase transition associated with the onset of the stripe phase has been identified as second order. The model of a Peierls transition in a disordered system (a `dirty Peierls transition) is shown to provide an extremely good fit to this transition. In addition, an unexpected magnetic phase has been revealed in low temperature Pr$_{0.48}$Ca$_{0.52}$MnO$_3$, associated with an excess heat capacity over a wide temperature range compared to La$_{1-x}$Ca$_x$MnO$_3$.
We have measured the electrical resistivity, magnetoresistance, and Hall effect on several new single crystal samples and one polycrystalline sample of alpha-uranium. The residual resistivity ratios of these samples vary from 13 to 315. Matthiessens law appears to hold above the onset of the charge density wave phase transitions that begin near 43 K, but not below this temperature. Sharp features at all three charge density wave transitions are observed and the effects of high magnetic fields on them are presented and discussed. The magnetoresistance is anisotropic, reaches 1000% at 2 K and 18 T, and does not exhibit Kohler scaling. The Hall coefficient is positive, independent of magnetic field, and slightly temperature dependent above about 40 K in agreement with earlier studies. Below 40 K the Hall coefficient changes sign as the temperature falls, varies with field, and becomes much more strongly negative at the lowest temperatures than has been reported. Some of our results suggest that a spin density wave may coexist with the charge density wave states. Superconductivity is observed in two of our samples, we argue that it is intrinsic to alpha-uranium and suggest that it is consistent with a two-band model. Several parameters characterizing the transport and superconductivity of alpha-uranium are estimated.
We present results for the electronic structure of alpha uranium using a recently developed quasiparticle self-consistent GW method (QSGW). This is the first time that the f-orbital electron-electron interactions in an actinide has been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) to the local density approximation (LDA). We show that the QSGW approximation predicts an f-level shift upwards of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy is not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material.
Infrared reflectance of alpha-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in the range of 1D magnetic excitation energies was found. The strong near-IR absorption band at 0.8 eV shows a strong anisotropy with vanishing intensity in c-polarisation. Activation of new phonons due to the lattice dimerisation were detected below 35K as well as pretransitional structural fluctuations up to 65K.
Polarized infrared reflectivity measurements have been performed on single crystals of the spin-Peierls compound alpha-NaV2O5 in the temperature range 20-300 K. Pronounced spectral features associated with the formation of the dimerized phase were detected both in the a- and b-polarizations (perpendicular and parallel to the spin-1/2 chains, respectively). The temperature dependence of a salient spectral line at 718 cm^-1 sharply rising below the transition temperature T_SP obeys a (1-T/T_SP)^(2beta) law with T_SP simeq 34.3$K and beta simeq 0.25. In addition, a continuum signal is observed in the whole temperature range in the a-polarized optical conductivity spectra. In order to interpret these results, calculations of the static dimerization and of the optical conductivity based on a mean-field and a dynamical treatment of the lattice respectively are proposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا