The phonon dynamics of filled skutterudite CeRu4Sb12 have been studied at room temperature by inelastic neutron scattering. Optical phonons associated with a large vibration of Ce atoms are observed at a relatively low energy of E = 6 meV, and show anticrossing behavior with acoustic phonons. We propose that the origin of the low lattice thermal conductivity in filled skutterudites can be attributed to intensive Umklapp scattering originating from low-lying optical phonons. By an analysis based on a Born-von Karman force model, the longitudinal force constants of the nearest Ce-Sb and Ce-Ru pairs are estimated to be 0.025 mdyn/A, while that of the nearest Ru-Sb pair is estimated to be 1.4 mdyn/A, indicating that the Ce atoms are bound very weakly to the surrounding rigid RuSb6-octahedron cages.