Do you want to publish a course? Click here

Ferromagnetism in the Mott insulator Ba2NaOsO6

324   0   0.0 ( 0 )
 Added by Ann Erickson
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d^1 ferromagnetic Mott insulator with an ordered moment of ~0.2 Bohr magnetons per formula unit and TC = 6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet groundstate anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.



rate research

Read More

122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
132 - D. Babich , J. Tranchant , C. Adda 2021
Since the beginnings of the electronic age, a quest for ever faster and smaller switches has been initiated, since this element is ubiquitous and foundational in any electronic circuit to regulate the flow of current. Mott insulators are promising candidates to meet this need as they undergo extremely fast resistive switching under electric field. However the mechanism of this transition is still under debate. Our spatially-resolved {mu}-XRD imaging experiments carried out on the prototypal Mott insulator (V0.95Cr0.05)2O3 show that the resistive switching is associated with the creation of a conducting filamentary path consisting in an isostructural compressed phase without any chemical nor symmetry change. This clearly evidences that the resistive switching mechanism is inherited from the bandwidth-controlled Mott transition. This discovery might hence ease the development of a new branch of electronics dubbed Mottronics.
Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single-spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to be present also in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflection at metal-superconductors interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.
121 - Jinwon Lee , Kyung-Hwan Jin , 2021
In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental way to verify the correlated nature of an insulator has been lacking. Here we demonstrate a way to unambiguously distinguish a paradigmatic correlated insulator, a Mott insulator, from a trivial band insulator based on their distinct chemical behavior for a surface adsorbate using 1T-TaS2, which has been debated between a spin-frustrated Mott insulator or a spin-singlet trivial insulator. We start from the observation of different sizes of spectral gaps on different surface terminations and show that potassium adatoms on these two surface layers behave in totally different ways. This can be straightforwardly understood from distinct properties of a Mott and a band insulators due to the fundamental difference of a half and a full-filled orbital involved respectively. This work not only solves an outstanding problem in this particularly interesting material but also provides a simple touchstone to identify the correlated ground state of electrons experimentally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا