Do you want to publish a course? Click here

Vortex Lattice Structures of a Bose-Einstein Condensate in a Rotating Lattice Potential

118   0   0.0 ( 0 )
 Added by Toshihiro Sato
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abrikosov vortex lattice to the pinned lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, intensity, and lattice constant of the rotating lattice potential.



rate research

Read More

138 - T. Sato , T. Ishiyama , 2007
We study the vortex pinning effect in a Bose-Einstein Condensate in the presence of a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. We consider a triangular lattice potential created by blue-detuned laser beams. By rotating the lattice potential, we observe a transition from the Abrikosov vortex lattice to the pinned vortex lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, strength, and lattice constant of a rotating lattice potential. Our simulation results clearly show that the lattice potential has a strong vortex pinning effect when the vortex density coincides with the density of the pinning points.
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently transfer a fraction of the superfluid to a different internal state $|2>$. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. Stability of the square lattice structure is confirmed via the application of shear perturbations, after which the structure relaxes back to the square configuration. We use an interference technique to show the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.
The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and numerically in all three dimensions. Our investigation shows that the sound speed depends strongly on the strength of the lattice. In the one-dimensional case, the speed of sound falls monotonically with increasing lattice strength. The dependence on lattice strength becomes much richer in two and three dimensions. In the two-dimensional case, when the interaction is weak, the sound speed first increases then decreases as the lattice strength increases. For the three dimensional lattice, the sound speed can even oscillate with the lattice strength. These rich behaviors can be understood in terms of compressibility and effective mass. Our analytical results at the limit of weak lattices also offer an interesting perspective to the understanding: they show the lattice component perpendicular to the sound propagation increases the sound speed while the lattice components parallel to the propagation decreases the sound speed. The various dependence of the sound speed on the lattice strength is the result of this competition.
We calculate the hydrodynamic solutions for a dilute Bose-Einstein condensate with long-range dipolar interactions in a rotating, elliptical harmonic trap, and analyse their dynamical stability. The static solutions and their regimes of instability vary non-trivially on the strength of the dipolar interactions. We comprehensively map out this behaviour, and in particular examine the experimental routes towards unstable dynamics, which, in analogy to conventional condensates, may lead to vortex lattice formation. Furthermore, we analyse the centre of mass and breathing modes of a rotating dipolar condensate.
146 - Ari M. Turner 2009
In contrast to charge vortices in a superfluid, spin vortices in a ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The mass of spin vortices depends on the spin-dependent interactions, and can be measured as a part of experiments on how spin vortices orbit one another. For Rb87 in a 1 micron thick trap m_v is about 10^-21 kg.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا