We perform a direct study of the magnitude of the anomalous splitting in the cyclotron resonance (CR) of a two-dimensional electron system (2DES) as a function of sample disorder. In a series of AlGaAs/GaAs quantum wells, identical except for a range of carbon doping in the well, we find the CR splitting to vanish at high sample mobilities but to increase dramatically with increasing impurity density and electron scattering rates. This observation lends strong support to the conjecture that the non-zero wavevector, roton-like minimum in the dispersion of 2D magnetoplasmons comes into resonance with the CR, with the two modes being coupled via disorder.