Do you want to publish a course? Click here

Current-driven destabilization of both collinear configurations in asymmetric spin-valves

71   0   0.0 ( 0 )
 Added by Martin Gmitra
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin transfer torque in spin valves usually destabilizes one of the collinear configurations (either parallel or antiparallel) and stabilizes the second one. Apart from this, balance of the spin-transfer and damping torques can lead to steady precessional modes. In this letter we show that in some asymmetric nanopillars spin current can destabilize both parallel and antiparallel configurations. As a result, stationary precessional modes can occur at zero magnetic field. The corresponding phase diagram as well as frequencies of the precessional modes have been calculated in the framework of macrospin model. The relevant spin transfer torque has been calculated in terms of the macroscopic model based on spin diffusion equations.



rate research

Read More

264 - M. Gmitra , J. Barnas 2007
Spin-transfer torque in asymmetric spin valves can destabilize both parallel and antiparallel configurations and can lead to precessional modes also in the absence of an external magnetic field. We find a bistable precessional regime in such systems and show that thermal fluctuations can excite transitions (telegraph noise) between the corresponding oscillatory regimes that are well separated by irreversible paths at low temperatures. Because of the thermally induced transitions, the frequency of the resulting current-driven oscillations is different from that obtained at very low temperatures. We also show that the power spectrum in the bistable region is dominated by the out-of-plane oscillatory mode.
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive spin transport is calculated as a function of magnetic configuration. It is shown that non-collinear magnetic configuration of the outermost magnetic layers has a strong influence on the spin torque and spin dynamics of the central free layer. Employing macrospin simulations we make some predictions on the free layer spin dynamics in spin valves composed of various magnetic layers. We also present a formula for critical current in non-collinear magnetic configurations, which shows that the magnitude of critical current can be several times smaller than that in typical single spin valves.
The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-dependent transport through a non-magnetic nanoconstriction separating two magnetic layers was investigated. Unexpected results such as vortices of spin-currents in the vicinity of the nanoconstriction were obtained. The angular variations of magnetoresistance and spin-transfer torque are strongly influenced by the structure geometry.
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the same spin injection efficiency for both spin types. This result is accounted for by a spin-dependent diffusion model. Joule heating increases considerably the local temperature in the spin valves when high current densities are injected ($sim$80--105 K for 1--2$times10^{7}$A cm$^{-2}$), strongly affecting the spin accumulation.
187 - Pavel Balaz , Martin Gmitra , 2009
Magnetization switching due to a current-pulse in symmetric and asymmetric spin valves is studied theoretically within the macrospin model. The switching process and the corresponding switching parameters are shown to depend significantly on the pulse duration and also on the interplay of the torques due to spin transfer and external magnetic field. This interplay leads to peculiar features in the corresponding phase diagram. These features in standard spin valves, where the spin transfer torque stabilizes one of the magnetic configurations (either parallel or antiparallel) and destabilizes the opposite one, differ from those in nonstandard (asymmetric) spin valves, where both collinear configurations are stable for one current orientation and unstable for the opposite one. Following this we propose a scheme of ultrafast current-induced switching in nonstandard spin valves, based on a sequence of two current pulses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا