Do you want to publish a course? Click here

Microscopic origin of diagonal stripe phases in doped nickelates

135   0   0.0 ( 0 )
 Added by Marcin Raczkowski
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the electron density distribution and the stability of stripe phases in the realistic two-band model with hopping elements between e_g orbitals at Ni sites on the square lattice, and compare these results with those obtained for the doubly degenerate Hubbard model with two equivalent orbitals and diagonal hopping. For both models we determine the stability regions of filled and half-filled stripe phases for increasing hole doping x=2-n in the range of x<0.4, using Hartree-Fock approximation for large clusters. In the parameter range relevant to the nickelates, we obtain the most stable diagonal stripe structures with filling of nearly one hole per atom, as observed experimentally. In contrast, for the doubly degenerate Hubbard model the most stable stripes are somewhat reminiscent of the cuprates, with half-filled atoms at the domain wall sites. This difference elucidates the crucial role of the off-diagonal e_g hopping terms for the stripe formation in La_2-xSr_xNiO_4. The influence of crystal field is discussed as well.



rate research

Read More

In a manganite film without quenched disorder, we show texturing in the form of insulating and metallic stripes above and below Curie temperature (Tc), respectively, by high resolution scanning tunneling microscopy/spectroscopy (STM/STS). The formation of these stripes involves competing orbital and charge orders, and are an outcome of overlapping electron wave-functions mediated by long-range lattice strain. Contrary to popular perception, electronically homogeneous stripe phase underlines the efficacy of the lattice strain in bringing about charge density modulation and in impeding the cross-talk between the order parameters, which otherwise evolves inhomogeneously in the form of orbitally-ordered insulating and orbitally disordered metallic phases.
104 - Y. Shen , G. Fabbris , H. Miao 2021
Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2-xSrxNiO4+{delta} in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant X-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La2-xSrxNiO4+{delta}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.
We investigate the formation of stripes in $7chunks times 6$ Hubbard ladders with $4chunks$ holes doped away from half filling using the density-matrix renormalization group (DMRG) method. A parallelized code allows us to keep enough density-matrix eigenstates (up to $m=8000$) and to study sufficiently large systems (with up to $7chunks = 21$ rungs) to extrapolate the stripe amplitude to the limits of vanishing DMRG truncation error and infinitely long ladders. Our work gives strong evidence that stripes exist in the ground state for strong coupling ($U=12t$) but that the structures found in the hole density at weaker coupling ($U=3t$) are an artifact of the DMRG approach.
90 - M. Rossi , H. Lu , A. Nag 2020
The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon doping, a higher energy feature in Ni $L_3$ edge XAS develops in addition to the main absorption peak. By comparing our data to atomic multiplet calculations including $D_{4h}$ crystal field, the doping induced feature is consistent with a $d^8$ spin singlet state, in which doped holes reside in the $d_{x^2-y^2}$ orbitals, similar to doped single band Hubbard models. This is further supported by orbital excitations observed in RIXS spectra, which soften upon doping, corroborating with Fermi level shift associated with increasing holes in the $d_{x^2-y^2}$ orbital.
Recently performed resonant inelastic x-ray scattering experiment (RIXS) at the copper L3 edge in the quasi-1D Mott insulator Sr2CuO3 has revealed a significant dispersion of a single orbital excitation (orbiton). This large and unexpected orbiton dispersion has been explained using the concept of spin-orbital fractionalization in which orbiton, which is intrinsically coupled to the spinon in this material, liberates itself from the spinon due to the strictly 1D nature of its motion. Here we investigate this mechanism in detail by: (i) deriving the microscopic spin-orbital superexchange model from the charge transfer model for the CuO3 chains in Sr2CuO3, (ii) mapping the orbiton motion in the obtained spin-orbital model into a problem of a single hole moving in an effective half-filled antiferromagnetic chain t-J model, and (iii) solving the latter model using the exact diagonalization and obtaining the orbiton spectral function. Finally, the RIXS cross section is calculated based on the obtained orbiton spectral function and compared with the RIXS experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا