The zero-temperature conductance of diatomic molecule, modelled as a correlated double quantum dot attached to noninteracting leads is investigated. We utilize the Rejec-Ramsak formulas, relating the linear-response conductance to the ground-state energy dependence on magnetic flux within the framework of EDABI method, which combines exact diagonalization with ab initio calculations. The single-particle basis renormalization leads to a strong particle-hole asymmetry, of the conductance spectrum, absent in a standard parametrized model study. We also show, that the coupling to leads V=0.5t (t is the hopping integral) may provide the possibility for interatomic distance manipulation due to the molecule instability.