Do you want to publish a course? Click here

Optical characteristics of single wavelength-tunable InAs/InGaAsP/InP(100) quantum dots emitting at 1.55 um

67   0   0.0 ( 0 )
 Added by Nic Cade
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the emission properties of individual InAs quantum dots (QDs) grown in an InGaAsP matrix on InP(100) by metal-organic vapor-phase epitaxy. Low-temperature microphotoluminescence spectroscopy shows emission from single QDs around 1550 nm with characteristic exciton-biexciton behavior, and a biexciton antibinding energy of more than 2 meV. Temperature-dependent measurements reveal negligible optical-phonon induced broadening of the exciton line up to 50 K, and emission from the exciton state clearly persists above 70 K. Furthermore, we find no measurable polarized fine structure splitting of the exciton state within the experimental precision. These results are encouraging for the development of a controllable photon source for fiber-based quantum information and cryptography systems.



rate research

Read More

Exciton spin and related optical polarization in self-assembled InAs/In$_{0.53}$Ga$_{0.23}$Al$_{0.24}$As/InP(001) quantum dashes emitting at 1.55 {mu}m are investigated by means of polarization- and time-resolved photoluminescence, as well as photoluminescence excitation spectroscopy, at cryogenic temperature. We investigate the influence of highly non-resonant and quasi-resonant optical spin pumping conditions on spin polarization and spin memory of the quantum dash ground state. We show that a spin pumping scheme, utilizing the longitudinal-optical-phonon-mediated coherent scattering process, can lead to the polarization degree above 50%. We discuss the role of intrinsic asymmetries in the quantum dash that influence values of the degree of polarization and its time evolution.
64 - N. I. Cade , H. Gotoh , H. Kamada 2005
We present a detailed investigation into the optical characteristics of individual InAs quantum dots (QDs) grown by metalorganic chemical vapor deposition, with low temperature emission in the telecoms window around 1300 nm. Using micro-photoluminescence (PL) spectroscopy we have identified neutral, positively charged, and negatively charged exciton and biexciton states. Temperature-dependent measurements reveal dot-charging effects due to differences in carrier diffusivity. We observe a pronounced linearly polarized splitting of the neutral exciton and biexciton lines (~250 ueV) resulting from asymmetry in the QD structure. This asymmetry also causes a mixing of the excited trion states which is manifested in the fine structure and polarization of the charged biexciton emission; from this data we obtain values for the ratio between the anisotropic and isotropic electron-hole exchange energies of (Delta1)/(Delta0)= 0.2--0.5. Magneto-PL spectroscopy has been used to investigate the diamagnetic response and Zeeman splitting of the various exciton complexes. We find a significant variation in g-factor between the exciton, the positive biexciton, and the negative biexciton; this is also attributed to anisotropy effects and the difference in lateral extent of the electron and hole wavefunctions.
143 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 1100 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
We demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements and accurately reproduced with a theoretical model accounting for the multi-level structure of the quantum dot. Notably, our analysis does not rely on the estimate of co-tunnelling contributions since electronic thermal transport is dominated by multi-level heat transport. By taking into account two spin-degenerate energy levels we are able to evaluate the electronic thermal conductance K and investigate the evolution of the electronic figure of merit ZT as a function of the quantum dot configuration and demonstrate ZT ~ 35 at 30 K, corresponding to an electronic effciency at maximum power close to the Curzon- Ahlborn limit.
We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general trend just depending on the total orbital energy of the trapped electrons. We show that a qualitatively different regime is observed at relatively low filling numbers, where tunneling rates are rather controlled by the axial configuration of the electron orbital. Transmission rates versus filling are further modified by acting on the radial configuration of the orbitals by means of electrostatic gating, and the barrier transparency for the various orbitals is found to evolve as expected from numerical simulations. The possibility to exploit this mechanism to achieve a controlled continuous tuning of the tunneling rate of an individual Coulomb blockade resonance is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا