Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.
We study the pump-probe response of three insulating cuprates and develop a model for its recombination kinetics. The dependence on time, fluence, and both pump and probe photon energies imply many-body recombination on femtosecond timescales, characterized by anomalously large trapping and Auger coefficients. The fluence dependence follows a universal form that includes a characteristic volume scale, which we associate with the holon-doublon excitation efficiency. This volume varies strongly with pump photon energy and peaks near twice the charge-transfer energy, suggesting that the variation is caused by carrier multiplication through impact ionization.
We demonstrate that the strong anomalies in the high frequency LO-phonon spectrum in cuprate superconductors can in principle be explained by the enhanced electronic polarizability associated with the self-organized one dimensionality of metallic stripes. Contrary to the current interpretation in terms of transversal stripe fluctuations, the anomaly should occur at momenta parallel to the stripes. The doping dependence of the anomaly is naturally explained, and we predict that the phonon line-width and the spread of the anomaly in the transverse momentum decrease with increasing temperature while high resolution measurements should reveal a characteristic substructure to the anomaly.
The electron-boson spectral density (or glue) function can be obtained from measured optical scattering rate by solving a generalized Allen formula, which relates the two quantities with an integral equation and is an inversion problem. Thus far, numerical approaches, such as the maximum entropy method (MEM) and the least squares fitting method, have been applied for solving the generalized Allen formula. Here, we developed a new method to obtain the glue functions from the optical scattering rate using a machine learning approach (MLA). We found that the MLA is more robust against random noise compared with the MEM. We applied the new developed MLA to experimentally measured optical scattering rates and obtained reliable glue functions in terms of their shapes including the amplitudes. We expect that the MLA can be a useful and rapid method for solving other inversion problems, which may contain random noise.
We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J-Holstein model giving perfect agreement with numerically exact Diagrammatic Monte Carlo data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.
We have investigated the doping and temperature dependences of the pseudogap/superconducting gap in the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ by angle-resolved photoemission spectroscopy. The results clearly exhibit two distinct energy and temperature scales, namely, the gap around ($pi$,0) of magnitude $Delta^*$ and the gap around the node characterized by the d-wave order parameter $Delta_0$, like the double-layer cuprate Bi2212. In comparison with Bi2212 having higher $T_c$s, $Delta_0$ is smaller, while $Delta^*$ and $T^*$ are similar. This result suggests that $Delta^*$ and $T^*$ are approximately material-independent properties of a single CuO$_2$ plane, in contrast the material-dependent $Delta_0$, representing the pairing strength.