Do you want to publish a course? Click here

Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration

407   0   0.0 ( 0 )
 Added by Kohei Hamaya
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.



rate research

Read More

171 - M. Glunk , J. Daeubler , L. Dreher 2009
We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. An almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.
Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements have revealed the presence of ripples aligned along the $[1bar{1}0]$ direction on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer layers, with periodicity of about 50 nm in all samples that have been studied. These samples show the strong symmetry breaking uniaxial magnetic anisotropy normally observed in such materials. We observe a clear correlation between the amplitude of the surface ripples and the strength of the uniaxial magnetic anisotropy component suggesting that these ripples might be the source of such anisotropy.
We report the observation of anomalies in the longitudinal magnetoresistance of tensile-strained (Ga,Mn)As epilayers with perpendicular magnetic anisotropy. Magnetoresistance measurements carried out in the planar geometry (magnetic field parallel to the current density) reveal spikes that are antisymmetric with respect to the direction of the magnetic field. These anomalies always occur during magnetization reversal, as indicated by a simultaneous change in sign of the anomalous Hall effect. The data suggest that the antisymmetric anomalies originate in anomalous Hall effect contributions to the longitudinal resistance when domain walls are located between the voltage probes. This interpretation is reinforced by carrying out angular sweeps of $vec{H}$, revealing an antisymmetric dependence on the helicity of the field sweep.
We study the effect of the shape anisotropy on the magnetic domain configurations of a ferromagnetic semiconductor (Ga,Mn)As/GaAs(001) epitaxial wire as a function of temperature. Using magnetoresistance measurements, we deduce the magnetic configurations and estimate the relative strength of the shape anisotropy compared with the intrinsic anisotropies. Since the intrinsic anisotropy is found to show a stronger temperature dependence than the shape anisotropy, the effect of the shape anisotropy on the magnetic domain configuration is relatively enhanced with increasing temperature. This information about the shape anisotropy provides a practical means of designing nanostructured spin electronic devices using (Ga,Mn)As.
249 - C. King , J. Zemen , K. Olejnik 2010
We present an experimental and theoretical study of magnetocrystalline anisotropies in arrays of bars patterned lithographically into (Ga,Mn)As epilayers grown under compressive lattice strain. Structural properties of the (Ga,Mn)As microbars are investigated by high-resolution X-ray diffraction measurements. The experimental data, showing strong strain relaxation effects, are in good agreement with finite element simulations. SQUID magnetization measurements are performed to study the control of magnetic anisotropy in (Ga,Mn)As by the lithographically induced strain relaxation of the microbars. Microscopic theoretical modeling of the anisotropy is performed based on the mean-field kinetic-exchange model of the ferromagnetic spin-orbit coupled band structure of (Ga,Mn)As. Based on the overall agreement between experimental data and theoretical modeling we conclude that the micropatterning induced anisotropies are of the magnetocrystalline, spin-orbit coupling origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا