Do you want to publish a course? Click here

Evidence for Novel Pairing State in Noncentrosymmetric Superconductor CePt3Si: 29Si-NMR Knight Shift Study

81   0   0.0 ( 0 )
 Added by Mamoru Yogi
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the measurements of the $^{29}$Si Knight shift $^{29}K$ on the noncentrosymmetric heavy-fermion compound CePt$_{3}$Si in which antiferromagnetism (AFM) with $T_{rm N}=2.2$ K coexists with superconductivity (SC) with $T_{c}=0.75$ K. Its spin part $^{29}K_{rm s}$, which is deduced to be $K_{rm s}^{c}ge 0.11$ and 0.16% at respective magnetic fields $H=2.0061$ and 0.8671 T, does not decrease across the superconducting transition temperature $T_{c}$ for the field along the c-axis. The temperature dependence of nuclear spin-lattice relaxation of $^{195}$Pt below $T_{c}$ has been accounted for by a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. From this result, it is shown that the Knight-shift data are consistent with the occurrence of the two-component order parameter for CePt$_{3}$Si.



rate research

Read More

We report on novel antiferromagnetic (AFM) and superconducting (SC) properties of noncentrosymmetric CePt3Si through measurements of the 195Pt nuclear spin-lattice relaxation rate 1/T_1. In the normal state, the temperature (T) dependence of 1/T1 unraveled the existence of low-lying levels in crystal-electric-field multiplets and the formation of a heavy fermion (HF) state. The coexistence of AFM and SC phases, that emerge at TN = 2.2 K and Tc = 0.75 K, respectively, takes place on a microscopic level. CePt3Si is the first HF superconductor that reveals a peak in 1/T1 just below Tc and, additionally, does not follow the T^3 law that used to be reported for most unconventional HF superconductors. We remark that this unexpected SC characteristics may be related with the lack of an inversion center in its crystal structure.
153 - H. Mukuda , T. Ohara , M. Yashima 2009
We report 29Si-NMR study on a single crystal of the heavy-fermion superconductor CeIrSi3 without an inversion symmetry along the c-axis. The 29Si-Knight shift measurements under pressure have revealed that the spin susceptibility for the ab-plane decreases slightly below Tc, whereas along the c-axis it does not change at all. The result can be accounted for by the spin susceptibility in the superconducting state being dominated by the strong antisymmetric (Rashba-type) spin-orbit interaction that originates from the absence of an inversion center along the c-axis and it being much larger than superconducting condensation energy. This is the first observation which exhibits an anisotropy of the spin susceptibility below Tc in the noncentrosymmetric superconductor dominated by strong Rashba-type spin-orbit interaction.
148 - K. Ueda , K. Hamamoto , T. Kohara 2004
In this article, we report the temperature dependence of spin-lattice relaxation rates at two Pt sites and one Si site in CePt3Si with a non-centrosymmetric structure center. 1/T1 for both Pt sites between 2 K and 300 K and 1/T1 of Si above 3 K might be explained by the contributions from the low-lying crystal-electric-field level and the quasiparticle due to the hybridization between the ground state and conduction electrons. Just below Tc no remarkable enhancement in 1/T1 was observed. The estimated value of superconducting gap is about 2Delta = 3kBTc.
126 - Y. Ihara , K. Ishida , H. Takeya 2005
The Co Knight shift was measured in an aligned powder sample of Na_xCoO_2yH_2O, which shows superconductivity at T_c sim 4.6 K. The Knight-shift components parallel (K_c) and perpendicular to the c-axis (along the ab plane K_{ab}) were measured in both the normal and superconducting (SC) states. The temperature dependences of K_{ab} and K_c are scaled with the bulk susceptibility, which shows that the microscopic susceptibility deduced from the Knight shift is related to Co-3d spins. In the SC state, the Knight shift shows an anisotropic temperature dependence: K_{ab} decreases below 5 K, whereas K_c does not decrease within experimental accuracy. This result raises the possibility that spin-triplet superconductivity with the spin component of the pairs directed along the c-axis is realized in Na_xCoO_2yH_2O.
We report a study in which the effect of defects/impurities, growth process, off-stoichiometry, and presence of impurity phases on the superconducting properties of noncentrosymmetric CePt3Si is analysed by means of the temperature dependence of the magnetic penetration depth. We found that the linear low-temperature response of the penetration depth -indicative of line nodes in this material- is robust regarding sample quality, in contrast to what is observed in unconventional centrosymmetric superconductors with line nodes. We discuss evidence that the broadness of the superconducting transition may be intrinsic, though not implying the existence of a second superconducting transition. The superconducting transition temperature systematically occurs around 0.75 K in our measurements, in agreement with resistivity and ac magnetic susceptibility data but in conflict with specific heat, thermal conductivity and NMR data in which Tc is about 0.5 K. Random defects do not change the linear low-temperature dependence of the penetration depth in the heavy-fermion CePt3Si with line nodes, as they do in unconventional centrosymmetric superconductors with line nodes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا