Do you want to publish a course? Click here

Metal-insulator transition in the In/Si(111) surface

168   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The metal-insulator transition observed in the In/Si(111)-4x1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [New J. of Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.

rate research

Read More

Hyperdoping Si with chalcogens is a topic of great interest due to the strong sub-bandgap absorption exhibited by the resulting material, which can be exploited to develop broadband room-temperature infrared photodetectors using fully Si-compatible technology. Here, we report on the critical behavior of the impurity-driven insulator-to-metal transition in Te-hyperdoped Si layers fabricated via ion implantation followed by nanosecond pulsed-laser melting. Electrical transport measurements reveal an insulator-to-metal transition, which is also confirmed and understood by density functional theory calculations. We demonstrate that the metallic phase is governed by a power law dependence of the conductivity at temperatures below 25 K, whereas the conductivity in the insulating phase is well described by a variable-range hopping mechanism with a Coulomb gap at temperatures in the range of 2-50 K. These results show that the electron wave-function in the vicinity of the transition is strongly affected by the disorder and the electron-electron interaction.
250 - Satoshi Okamoto , Di Xiao 2017
Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM $d$ electrons further enrich the behavior.
We report an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about a bond-centered pseudoatom model, we find experimentally that the adatoms are in an anti-bonding state with the atoms directly below. We are also able to experimentally refine a charge transfer of 0.26(4) e- from each adatom site to the underlying layers. These results are compared with a full-potential all-electron density functional DFT calculation.
Vanadium dioxide (VO$_2$) undergoes a metal-insulator transition (MIT) at 340 K with the structural change between tetragonal and monoclinic crystals as the temperature is lowered. The conductivity $sigma$ drops at MIT by four orders of magnitude. The low-temperature monoclinic phase is known to have a lower ground-state energy. The existence of a $k$-vector ${boldsymbol k}$ is prerequisite for the conduction since the ${boldsymbol k}$ appears in the semiclassical equation of motion for the conduction electron (wave packet). Each wave packet is, by assumption, composed of the plane waves proceeding in the ${boldsymbol k}$ direction perpendicular to the plane. The tetragonal (VO$_2$)$_3$ unit cells are periodic along the crystals $x$-, $y$-, and z-axes, and hence there are three-dimensional $k$-vectors. The periodicity using the non-orthogonal bases does not legitimize the electron dynamics in solids. There are one-dimensional ${boldsymbol k}$ along the c-axis for a monoclinic crystal. We believe this decrease in the dimensionality of the $k$-vectors is the cause of the conductivity drop. Triclinic and trigonal (rhombohedral) crystals have no $k$-vectors, and hence they must be insulators. The majority carriers in graphite are electrons, which is shown by using an orthogonal unit cell for the hexagonal lattice.
97 - S. Ito , M. Arita , J. Haruyama 2019
The emergence of quantization at the nanoscale, the quantum size effect (QSE), allows flexible control of matter and is a rich source of advanced functionalities. A QSE-induced transition into an insulating phase in semimetallic nanofilms was predicted for bismuth a half-century ago and has regained new interest with regard to its surface states exhibiting nontrivial electronic topology. Here, we reveal an unexpected mechanism of the transition by high-resolution angle-resolved photoelectron spectroscopy combined with theoretical calculations. Anomalous evolution and degeneracy of quantized energy levels indicate that increased Coulomb repulsion from the surface states deforms a quantum confinement potential with decreasing thickness. The potential deformation drastically modulates spatial distributions of quantized wave functions, which leads to acceleration of the transition even beyond the original QSE picture. This discovery establishes a complete picture of the long-discussed problem in bismuth and highlights the new class of size effects dominating nanoscale transport in systems with metallic surface states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا