A series of in-plane substituted compounds, including Cu-site (SrZn$_x$Cu$_{2-x}$(BO$_3$)$_2$), and B-site (SrCu$_2$(Si$_x$B$_{1-x}$O$_3$)$_2$) substitution, were synthesized by solid state reaction. X-ray diffraction measurements reveal that these compounds are single-phase materials and their in-plane lattice parameter depends systematically on the substituting content $x$. The magnetic susceptibility in different magnetic fields, the magnetization at different temperatures, and the resistivity at room temperature were measured, respectively. It is found that the spin gap deduced from the magnetic susceptibility measurements decreases with increasing of $x$ in both Cu- and B-site substitution. No superconductivity was found in these substituted compounds.