No Arabic abstract
By means of muon spin spectroscopy, we have found that K$_{0.49}$CoO$_2$ crystals undergo successive magnetic transitions from a high-T paramagnetic state to a magnetic ordered state below 60 K and then to a second ordered state below 16 K, even though K_{0.49}CoO_2 is metallic at least down to 4 K. An isotropic magnetic behavior and wide internal-field distributions suggest the formation of a commensurate helical spin density wave (SDW) state below 16 K, while a linear SDW state is likely to exist above 16 K. It was also found that K_{0.49}CoO_2 exhibits a further transition at 150 K presumably due to a change in the spin state of the Co ions. Since the T dependence of the internal-field below 60 K was similar to that for Na_{0.5}CoO_2, this suggests that magnetic order is more strongly affected by the Co valence than by the interlayer distance/interaction and/or the charge-ordering.
The nature of the magnetic transition of the half-filled triangular antiferromagnet Ag$_{2}$NiO$_2$ with $T_{rm N}$=56K was studied with positive muon-spin-rotation and relaxation ($mu^+$SR) spectroscopy. Zero field $mu^+$SR measurements indicate the existence of a static internal magnetic field at temperatures below $T_{rm N}$. Two components with slightly different precession frequencies and wide internal-field distributions suggest the formation of an incommensurate antiferromagnetic order below 56 K. This implies that the antifrerromagnetic interaction is predominant in the NiO$_2$ plane in contrast to the case of the related compound NaNiO$_2$. An additional transition was found at $sim$22 K by both $mu^+$SR and susceptibility measurements. It was also clarified that the transition at $sim$260 K observed in the susceptibility of Ag$_{2}$NiO$_{2}$ is induced by a purely structural transition.
The nature of the magnetic transition of the Na-rich thermoelectric Na$_{0.75}$CoO$_2$ at 22K was studied by positive muon-spin-rotation and relaxation ($mu^+$SR) spectroscopy, using a polycrystalline sample in the temperature range between 300 and 2.5 K. Zero field $mu$SR measurements indicated the existence of a static internal magnetic field at temperatures below 22 K (= $T_{rm m}$). The observed muon spin precession signal below $T_{rm m}$ consisted of three components with different precession frequencies, corresponding to three inequivalent muon$^+$ sites in the Na$_{0.75}$CoO$_2$ lattice. The total volume fraction of the three components was estimated as $sim$21% at 2.5 K; thus, this magnetic transition was not induced by impurities but is an intrinsic change in the magnetism of the sample, although the sample was magnetically inhomogeneous otherwise. On the other hand, a similar experiment on a Na$_{0.65}$CoO$_2$ sample exhibited no magnetic transition down to 2.5 K; which indicates that the average valence of the Co ions is responsible for inducing the magnetic transition at 22 K.
Transport property is investigated in [Ca$_{2}$CoO$_{3-delta}$]$_{0.62}$[CoO$_{2}$] single crystals obtained by varying annealing conditions. The $rho_{ab}(T)$ exhibits a resistivity minimum, and the temperature corresponding to this minimum increases with the loss of oxygen content, indicative of the enhancement of spin density wave (SDW). Large negative magnetoresistance (MR) was observed in all single crystals [Ca$_{2}$CoO$_{3-delta}$]$_{0.62}$[CoO$_{2}$], while a magnetic-field-driven insulator-to-metal (IM) transition in oxygen annealed samples. These results suggest a ferromagnetic correlation in system enhanced by oxygen content. In addition, a low temperature thermal activation resistivity induced by fields was observed in single crystals annealed in oxygen atmosphere.
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [Sakurai $textit{et al.}$ 1968 Phys. Rev. $mathbf{167}$ 510]. Despite identifying magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below $Trm{_{N}}$ using conventional pseudo-bosonic approaches. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-$T_{c}$ cuprate superconductors [Bednorz & Muller 1986 Z. Phys. B $mathbf{64}$ 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue MgO. These experiments would prove instrumental in the determination of both single-ion [Cowley $textit{et al.}$ 2013 Phys. Rev. B $mathbf{88}$ 205117] and cooperative magnetic parameters [Sarte $textit{et al.}$ 2018 Phys. Rev. B $mathbf{98}$ 024415] for CoO. Both these sets of parameters would eventually be used in a spin-orbit exciton model [Sarte $textit{et al.}$ 2019 Phys. Rev. B $mathbf{100}$ 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.