Do you want to publish a course? Click here

Temperature Dependence of the Superfluid Density in a Noncentrosymmetric Superconductor

108   0   0.0 ( 0 )
 Added by Nobuhiko Hayashi
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We calculate the superfluid density tensor in the clean limit on the basis of the quasiclassical theory of superconductivity. We demonstrate that such a pairing model accounts for an experimentally observed feature of the temperature dependence of the London penetration depth in CePt3Si, i.e., line-node-gap behavior at low temperatures.

rate research

Read More

We report ac susceptibility measurements of polycrystalline CePt_3Si down to 60 mK and in applied fields up to 9 T. In zero field, a full Meissner state emerges at temperatures T/Tc < 0.3, where Tc=0.65 K is the onset transition temperature. Though transport measurements show a relatively high upper critical field Bc2 ~ 4-5 T, the low temperature susceptibility, chi, is quite fragile to applied field, with chi diminishing rapidly in fields of a few kG. Interestingly, the field dependence of chi is well described by the power law, 4pichi=(B/B_c)^{1/2}, where Bc is the field at which the onset of resistance is observed in transport measurements.
We report on high-pressure (p_max = 2.1 GPa) muon spin rotation experiments probing the temperature-dependent magnetic penetration depth in the layered superconductor 2H-NbSe_2. Upon increasing the pressure, we observe a substantial increase of the superfluid density n_s, which we find to scale linearly with T_c. This linear scaling is considered a hallmark feature of unconventional superconductivity, especially in high-temperature cuprate superconductors. Our current results, along with our earlier findings on 1T-MoTe_2 (Z. Guguchia et. al., Nature Communications 8, 1082 (2017)), demonstrate that this linear relation is also an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T_c/T_F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the quasi-two-dimensional CDW state, indicating that the CDW ordering and the superconductivity in 2H-NbSe_2 are independent of each other.
234 - W. Xie , P. R. Zhang , B. Shen 2019
We report the discovery of a new noncentrosymmetric superconductor CaPtAs. It crystallizes in a tetragonal structure (space group $I4_1md$, No.109), featuring three dimensional honeycomb networks of Pt-As and a much elongated $c$-axis ($a = b = 4.18 $ AA, and $c = 43.70 $ AA). The superconductivity of CaPtAs with $T_c$ = 1.47 K was characterized by means of electrical resistivity, specific heat, and ac magnetic susceptibility. The electronic specific heat $C_mathrm{e}(T)/T$ shows evidence for a deviation from the behavior of a conventional BCS superconductor, and can be reasonably fitted by a $p$-wave model. The upper critical field $mu_0H_{c2}$ of CaPtAs exhibits a relatively large anisotropy, with an in-plane value of around 204 mT and an out-of-plane value of 148 mT. Density functional theory calculations indicate that the Pt-5$d$ and As-4$p$ orbitals mainly contribute to the density of states near the Fermi level, showing that the Pt-As honeycomb networks may significantly influence the superconducting properties.
We numerically study the vortex core structure in a noncentrosymmetric superconductor such as CePt3Si without mirror symmetry about the xy plane. A single vortex along the z axis and a mixed singlet-triplet Cooper pairing model are considered. The spatial profiles of the pair potential, local density of states, supercurrent density, and radially-textured magnetic moment density around the vortex are obtained in the clean limit on the basis of the quasiclassical theory of superconductivity.
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We demonstrate that such a model on a qualitative level accounts for experimentally observed features of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1, namely a peak just below Tc and a line-node gap behavior at low temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا