No Arabic abstract
We present a first-principles study of the unreconstructed (001) surfaces of the half-metallic ferromagnet NiMnSb. Both terminations (MnSb and Ni) are considered. We find that half-metallicity is lost at the surfaces. After a discussion of the geometric relaxations and the spin-polarized surface band structure, we focus on topography images which are expected to be found with spin-polarized scanning tunneling microscopy. For the MnSb-terminated surface we find that only the Sb atoms are visible, reflecting a geometric buckling caused by relaxations. For the Ni-terminated surface we find a strong contrast between the images of forward and reverse tip-sample-bias of 0.5 eV, as well as a stripe-like image for reverse bias. We interpret these findings in terms of highly directional surface states which are formed in the spin-down gap region.
We compare STM investigations on two hexaboride compounds, SmB$_6$ and EuB$_6$, in an effort to provide a comprehensive picture of their surface structural properties. The latter is of particular importance for studying the nature of the surface states in SmB$_6$ by surface-sensitive tools. Beyond the often encountered atomically rough surface topographies of {it in situ}, low-temperature cleaved samples, differently reconstructed as well as B-terminated and, more rarely, rare-earth terminated areas could be found. With all the different surface topographies observed on both hexaborides, a reliable assignment of the surface terminations can be brought forward.
Ni2MnGa(100) surface has been investigated in the premartensite and martensite phase by using scanning tunneling microscopy. The presence of twined morphology is observed in the premartensite phase for Mn excess surface which exhibit non-equispaced parallel bands in one side of the twin boundary. Moreover, in the flat region of the surface two domains of non-periodic parallel bands corresponding to the incommensurate CDW is observed. Although, stoichiometric surface also exhibit twining but the parallel bands are equispaced and have equal corrugation. Most interestingly, coexistence of twined morphology and the CDW pattern is observed in the premartensite phase for Ni excess surface which was not reported till date. In the martensite phase for Mn excess surface, incommensurate CDW is transformed to commensurate CDW corresponding to the equispaced parallel bands. In stark contrast, stoichiometric surface exhibit parallel bands that have different periodicity in different regions. Both the voltage dependent STM and STS measurement establishes that this morphology is also related to the CDW.
Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with Point Contact Andreev Reflection (PCAR) spectroscopy measurements, which give much lower values of spin polarization, P. Here, we present the spin polarization measurements of Co2FeSi by the PCAR technique, along with a thorough computational exploration, within the DFT and a GGA+U approach, of the Coulomb exchange U-parameters for Co and Fe atoms, taking into account spin-orbit coupling. We find that the orbital contribution (mo) to the total magnetic moment (mT) is significant, since it is at least 3 times greater than the experimental uncertainty of mT. Account of mo radically affects the acceptable values of U. Specifically, we find no values of U that would simultaneously satisfy the experimental values of the magnetic moment and result in the half-metallicity of Co2FeSi. On the other hand, the ranges of U that we report as acceptable are compatible with spin polarization measurements (ours and the ones found in the literature), which all are within approximately 40-60% range. Thus, based on reconciling experimental and computational results, we conclude that: a) spin-orbit coupling cannot be neglected in calculating Co2FeSi magnetic properties, and b) Co2FeSi Heusler alloy is not half-metallic. We believe that our approach can be applied to other Heusler alloys such as Co2FeAl.
We have studied the nature of the surface charge distribution in CeTe3. This is a simple, cleavable, layered material with a robust one-dimensional incommensurate charge density wave (CDW). Scanning tunneling microscopy (STM) has been applied on the exposed surface of a cleaved single crystal. At 77 K, the STM images show both the atomic lattice of surface Te atoms arranged in a square net and the CDW modulations oriented at 45 degrees with respect to the Te net. Fourier transform of the STM data shows Te square lattice peaks, and peaks related to the CDW oriented at 45 degrees to the lattice peaks. In addition, clear peaks are present, consistent with subsurface structure and wave vector mixing effects. These data are supported by electronic structure calculations, which show that the subsurface signal most likely arises from a lattice of Ce atoms situated 2.53 angstroms below the surface Te net.
A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations.