Low energy electronic states and triplet pairing in layered cobaltates


Abstract in English

The structure of the low-energy electronic states in layered cobaltates is considered starting from the Mott insulating limit. We argue that the coherent part of the wave-functions and the Fermi-surface topology at low doping are strongly influenced by spin-orbit coupling of the correlated electrons on the $t_{2g}$ level. An effective t-J model based on mixed spin-orbital states is radically different from that for the cuprates, and supports unconventional, pseudospin-triplet pairing.

Download