Do you want to publish a course? Click here

Revisiting the chain magnetism in Sr14Cu24O41: Experimental and numerical results

59   0   0.0 ( 0 )
 Added by Vladislav Kataev
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the magnetism of the hole doped CuO2 spin chains in Sr14Cu24O41 by measuring the Electron Spin Resonance (ESR) and the static magnetization M in applied magnetic fields up to 14 T. In this compound, the dimerized ground state and the charge order in the chains are well established. Our experimental data suggest that at low temperatures the Curie-like increase of M as well as the occurrence of the related ESR signal are due to a small amount of paramagnetic centers which are not extrinsic defects but rather unpaired Cu spins in the chain. These observations qualitatively confirm recent ab initio calculations of the ground state properties of the CuO2 chains in Sr14Cu24O41. Our complementary quantum statistical simulations yield that the temperature and field dependence of the magnetization can be well described by an effective Heisenberg model in which the ground state configuration is composed of spin dimers, trimers, and monomers.



rate research

Read More

We perform a comparative study of the KCr3As3 and the K2Cr3As3 quasi 1D compounds, and show that the strong interplay between the lattice and the spin degrees of freedom promotes a new collinear ferrimagnetic ground state within the chains in presence of intrachain antiferromagnetic couplings. We propose that the interchain antiferromagnetic coupling in KCr3As3 plays a crucial role for the experimentally observed spin-glass phase with low critical temperature. In the same region of the parameter space, we predict K2Cr3As3 to be non-magnetic but on the verge of the magnetism, sustaining interchain ferromagnetic spin fluctuations while the intrachain spin fluctuations are antiferromagnetic.
We discuss the magnetic properties of a dimerized and completely frustrated tetrahedral spin-1/2 chain. Using a combination of exact diagonalization and bond-operator theory the quantum phase diagram is shown to incorporate a singlet-product, a dimer, and a Haldane phase. In addition we consider one-, and two-triplet excitations in the dimer phase and evaluate the magnetic Raman cross section which is found to be strongly renormalized by the presence of a two-triplet bound state. The link to a novel tellurate materials is clarified.
We explore numerically, analytically, and experimentally the relationship between quasi-normal modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrum of one-dimensional (1D) and quasi-1D open disordered systems. It is shown that for weak disorder there exist two types of the eigenstates: ordinary QNMs which are associated with a TR, and hidden QNMs which do not exhibit peaks in transmission or within the sample. The distinctive feature of the hidden modes is that unlike ordinary ones, their lifetimes remain constant in a wide range of the strength of disorder. In this range, the averaged ratio of the number of transmission peaks $N_{rm res}$ to the number of QNMs $N_{rm mod}$, $N_{rm res}/N_{rm mod}$, is insensitive to the type and degree of disorder and is close to the value $sqrt{2/5}$, which we derive analytically in the weak-scattering approximation. The physical nature of the hidden modes is illustrated in simple examples with a few scatterers. The analogy between ordinary and hidden QNMs and the segregation of superradiant states and trapped modes is discussed. When the coupling to the environment is tuned by an external edge reflectors, the superradiace transition is reproduced. Hidden modes have been also found in microwave measurements in quasi-1D open disordered samples. The microwave measurements and modal analysis of transmission in the crossover to localization in quasi-1D systems give a ratio of $N_{rm res}/N_{rm mod}$ close to $sqrt{2/5}$. In diffusive quasi-1D samples, however, $N_{rm res}/N_{rm mod}$ falls as the effective number of transmission eigenchannels $M$ increases. Once $N_{rm mod}$ is divided by $M$, however, the ratio $N_{rm res}/N_{rm mod}$ is close to the ratio found in 1D.
116 - Emilio Lorenzo 2014
We report the direct observation by inelastic neutron scattering experiments of a spin triplet of magnetic excitations in the response associated with the ladders in the composite cuprate Sr14Cu24O41. This appears as a peak at q_{Q1D}=pi and energy Delta_1=32.5 meV, and we conjecture that all the triplets making up this conspicuous peak have the same phase and therefore interpret it as the signature of the occurrence of quantum coherence along the ladder direction between entangled spin pairs. From the comparison with previous neutron and x-ray data, we conclude that the temperature evolution of this mode is driven by the crystallization of holes into a charge density wave in the ladder sublattice
Co-based nanostructures ranging from core-shell to hollow nanoparticles were produced by varying the reaction time and the chemical environment during the thermal decomposition of Co2(CO)8. Both structural characterization and kinetic model simulation illustrate that the diffusivities of Co and oxygen determine the growth ratio and the final morphology of the nanoparticles. Exchange coupling between Co and Co-oxide in core/shell nanoparticles induced a shift of field-cooled hysteresis loops that is proportional to the shell thickness, as verified by numerical studies. The increased nanocomplexity when going from core/shell to hollow particles, also leads to the appearance of hysteresis above 300 K due to an enhancement of the surface anisotropy resulting from the additional spin-disordered surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا