We have studied the magnetoresistance (TMR) of tunnel junctions with electrodes of La2/3Sr1/3MnO3 and we show how the variation of the conductance and TMR with the bias voltage can be exploited to obtain a precise information on the spin and energy dependence of the density of states. Our analysis leads to a quantitative description of the band structure of La2/3Sr1/3MnO3 and allows the determination of the gap delta between the Fermi level and the bottom of the t2g minority spin band, in good agreement with data from spin-polarized inverse photoemission experiments. This shows the potential of magnetic tunnel junctions with half-metallic electrodes for spin-resolved spectroscopic studies.
Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some {mu}V, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co$_2$FeAl and Co$_2$FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B based junctions.
Using theoretical arguments, we show that, in order to exploit half-metallic ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to eliminate interface states at the Fermi level within the half-metallic gap; contrary to this, no such problem arises in giant magnetoresistance elements. Moreover, based on an a priori understanding of the electronic structure, we propose an antiferromagnetically coupled TMR element, in which interface states are eliminated, as a paradigm of materials design from first principles. Our conclusions are supported by ab-initio calculations.
Van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW materials, providing new paradigms for spintronic applications. Here, using density functional theory (DFT) calculations, we investigate the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer. For both types of junctions, we find that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel. Such a giant tunneling magnetoresistance (TMR) effect is driven by dissimilar electronic structure of the two spin-conducting channels in Fe3GeTe2, resulting in a mismatch between the incoming and outgoing Bloch states in the electrodes and thus suppressed transmission for an antiparallel-aligned MTJ. The vdW bounding between electrodes and a spacer layer makes this result virtually independent of the type of the spacer layer, making the predicted giant TMR effect robust with respect to strain, lattice mismatch, interface distance and other parameters which may vary in the experiment. We hope that our results will further stimulate experimental studies of vdW MTJs and pave the way for their applications in spintronics.
Metal-Insulator-Metal tunnel junctions (MIMTJ) are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically-thin barriers demanded for enhanced quantum coherence. In this work, we employed in situ scanning tunneling spectroscopy (STS) along with molecular dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic layer deposition (ALD). We found that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically-thin Al2O3 tunnel barrier with a high quality M-I interface and a significantly enhanced barrier height compared to thermal AlOx. These properties, corroborated by fabricated Josephson Junctions, show that ALD Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next-generation of MIMTJs.
We provide compelling evidence to establish that, contrary to ones elementary guess, the tunneling spin polarization (TSP) of amorphous CoFeB is larger than that of highly textured fcc CoFeB. First principles atomic and electronic structure calculations reveal striking agreement between the measured TSP and the predicted s-electron spin polarization. Given the disordered structure of the ternary alloy, not only do these results strongly endorse our communal understanding of tunneling through AlOx, but they also portray the key concepts that demand primary consideration in such complex systems.