Spin-orientation-dependent spatial structure of a magnetic acceptor state in a zincblende semiconductor


Abstract in English

The spin orientation of a magnetic dopant in a zincblende semiconductor strongly influences the spatial structure of an acceptor state bound to the dopant. The acceptor state has a roughly oblate shape with the short axis aligned with the dopants core spin. For a Mn dopant in GaAs the local density of states at a site 8 angstrom away from the dopant can change by as much by 90% when the Mn spin orientation changes. These changes in the local density of states could be probed by scanning tunneling microscopy to infer the magnetic dopants spin orientation.

Download