Hierarchical lattices that constitute spatially anisotropic systems are introduced. These lattices provide exact solutions for hierarchical models and, simultaneously, approximate solutions for uniaxially or fully anisotropic d=3 physical models. The global phase diagrams, with d=2 and d=1 to d=3 crossovers, are obtained for Ising, XY magnetic models and percolation systems, including crossovers from algebraic order to true long-range order.