Bound states in Andreev billiards with soft walls


Abstract in English

The energy spectrum and the eigenstates of a rectangular quantum dot containing soft potential walls in contact with a superconductor are calculated by solving the Bogoliubov-de Gennes (BdG) equation. We compare the quantum mechanical solutions with a semiclassical analysis using a Bohr--Sommerfeld (BS) quantization of periodic orbits. We propose a simple extension of the BS approximation which is well suited to describe Andreev billiards with parabolic potential walls. The underlying classical periodic electron-hole orbits are directly identified in terms of ``scar like features engraved in the quantum wavefunctions of Andreev states determined here for the first time.

Download