Do you want to publish a course? Click here

Spin Susceptibility in Underdoped Cuprates: Insights from a Stripe-Ordered Crystal

104   0   0.0 ( 0 )
 Added by Markus Huecker
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the susceptibility, observed in both the paramagnetic and stripe-ordered phases, directly indicates that localized Cu moments dominate the magnetic response. A field-induced spin-flop transition provides further corroboration for the role of local moments. Contrary to previous analyses of data from polycrystalline samples, we find that a commonly-assumed isotropic and temperature-independent contribution from free carriers, if present, must be quite small. Our conclusion is strengthened by extending the quantitative analysis to include crystals of La(2-x)Ba(x)CuO(4) with x=0.095 and 0.155. On the basis of our results, we present a revised interpretation of the temperature and doping dependence of the spin susceptibility in La(2-x)(Sr,Ba)(x)CuO(4).

rate research

Read More

524 - Vivek Mishra , M. R. Norman 2015
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such order would be competitive with d-wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone. Our results find that bond-oriented order, as seen experimentally, is strongly suppressed, indicating that the charge order must have a different origin.
Several experimental and theoretical studies indicate the existence of a critical point separating the underdoped and overdoped regions of the high-T_c cuprates phase diagram. There are at least two distinct proposals on the critical concentration and its physical origin. First one is associated with the pseudogap formation for p<p*, with p~0.2. Another one relies on the Hall effect measurements and suggests that the critical point and the quantum phase transition (QPT) take place at optimal doping, p_{opt}~0.16. Here we have performed a precise density of states calculation and found that there are two QPTs and the corresponding critical concentrations associated with the change of the Fermi surface topology upon doping.
A systematic inelastic neutron scattering study of the superexchange interaction in three different undoped monolayer cuprates (La_2CuO_4, Nd_2CuO_4 and Pr_2CuO_4) has been performed using conventional triple axis technique. We deduce the in-plane antiferromagnetic (AF) superexchange coupling $J$ which actually presents no simple relation versus crystallographic parameters. The absolute spectral weight of the spin susceptibility has been obtained and it is found to be smaller than expected even when quantum corrections of the AF ground state are taken into account.
In the stripe-ordered state of a strongly-correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a non-zero wave-vector corresponding to a spatial period double that of the charge order. In this case, the Josephson coupling between near neighbor planes, especially in a crystal with the special structure of La_{2-x}Ba_xCuO_4, vanishes identically. We propose that this is the underlying cause of the dynamical decoupling of the layers recently observed in transport measurements at x=1/8.
366 - T. Senthil , P. A. Lee 2009
The underdoped cuprates have a number of interesting and unusual properties that often seem hard to reconcile with one another. In this paper we show how many of these diverse phenomena can be synthesized into a single coherent theoretical picture. Specifically we present a description where a pseudogap and gapless Fermi arcs exist in the normal state above the superconducting transition temperature ($T_c$), but give way to the observed quantum oscillations and other phenomena at low temperature when the superconductivity is suppressed by a magnetic field. We show the consistency between these phenomena and observations of enhanced Nernst and diamagnetic signals above $T_c$. We also develop a description of the vortex core inside the superconducting state and discuss its relation with the high field phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا