We study the adsorption of homogeneous or heterogeneous polymers onto heterogeneous planar surfaces with exponentially decaying site-site correlations, using a variational reference system approach. As a main result, we derive simple equations for the adsorption-desorption transition line. We show that the adsorption threshold is the same for systems with quenched and annealed disorder. The results are discussed with respect to their implications for the physics of molecular recognition.
Using a reference system approach, we develop an analytical theory for the adsorption of random heteropolymers with exponentially decaying and/or oscillating sequence correlations on planar homogeneous surfaces. We obtain a simple equation for the adsorption-desorption transition line. This result as well as the validity of the reference system approach is tested by a comparison with numerical lattice calculations.
Adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length $N$ to a planar solid surface in the absence of hydrodynamic interactions. We find that for weak adsorption energies the adsorption time scales $ sim N^{(1+2 u)/(1+ u)}$, where $ u$ is the Flory exponent for the polymer. We argue that in this regime the single chain adsorption is closely related to a field-driven polymer translocation through narrow pores. Surprisingly, for high adsorption energies the adsorption time becomes longer, as it scales $sim N^{(1+ u)}$, which is explained by strong stretching of the unadsorbed part of the polymer close to the adsorbing surface. These two dynamic regimes are separated by an energy scale that is characterised by non-equilibrium contributions during the adsorption process.
We examine the phase transition of polymer adsorption as well as the underlying kinetics of polymer binding from dilute solutions on a structureless solid surface. The emphasis is put on the properties of regular multiblock copolymers, characterized by block size M and total length N as well as on random copolymers with quenched composition p of sticky and neutral segments. The macromolecules are modeled as coarse-grained bead-spring chains subject to a short-ranged surface adhesive potential. Phase diagrams, showing the variation of the critical threshold for single chain adsorption in terms of M and p are derived from scaling considerations in agreement with results from computer experiment. Using both scaling analysis and numerical data from solving a system of coupled Master equations, we demonstrate that the phase behavior at criticality, and the adsorption kinetics may be adequately predicted and understood, in agreement with the results of extensive Monte Carlo simulations. Derived analytic expressions for the mean fraction of adsorbed segments as well as for Probability Distribution Functions of the various structural building blocks (i.e., trains, loops, tails) at time t during the chain attachment process are in good agreement with our numeric experiments and provide insight into the mechanism of polymer adsorption.
Advanced chain-growth computer simulation methodologies have been employed for a systematic statistical analysis of the critical behavior of a polymer adsorbing at a substrate. We use finitesize scaling techniques to investigate the solvent-quality dependence of critical exponents, critical temperature, and the structure of the phase diagram. Our study covers all solvent effects from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures. The results significantly benefit from taking into account corrections to scaling.
Conformational transitions of flexible molecules, especially those driven by hydrophobic effects, tend to be hindered by desolvation barriers. For such transitions, it is thus important to characterize and understand the interplay between solvation and conformation. Using specialized molecular simulations, here we perform such a characterization for a hydrophobic polymer solvated in water. We find that an external potential, which unfavorably perturbs the polymer hydration waters, can trigger a coil-to-globule or collapse transition, and that the relative stabilities of the collapsed and extended states can be quantified by the strength of the requisite potential. Our results also provide mechanistic insights into the collapse transition, highlighting that polymer collapse proceeds through the formation of a sufficiently large non-polar cluster, and that collective water density fluctuations play an important role in stabilizing such a cluster. We also study the collapse of the hydrophobic polymer in octane, a non-polar solvent, and interestingly, we find that the mechanistic details of the transition are qualitatively similar to that in water.