Do you want to publish a course? Click here

Source coding by efficient selection of ground states clusters

86   0   0.0 ( 0 )
 Added by Demian Battaglia
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, we show how the Survey Propagation algorithm can be generalized to include external forcing messages, and used to address selectively an exponential number of glassy ground states. These capabilities can be used to explore efficiently the space of solutions of random NP-complete constraint satisfaction problems, providing a direct experimental evidence of replica symmetry breaking in large-size instances. Finally, a new lossy data compression protocol is introduced, exploiting as a computational resource the clustered nature of the space of addressable states.



rate research

Read More

Ground state entropy of the network source location problem is evaluated at both the replica symmetric level and one-step replica symmetry breaking level using the entropic cavity method. The regime that is a focus of this study, is closely related to the vertex cover problem with randomly quenched covered nodes. The resulting entropic message passing inspired decimation and reinforcement algorithms are used to identify the optimal location of sources in single instances of transportation networks. The conventional belief propagation without taking the entropic effect into account is also compared. We find that in the glassy phase the entropic message passing inspired decimation yields a lower ground state energy compared to the belief propagation without taking the entropic effect. Using the extremal optimization algorithm, we study the ground state energy and the fraction of frozen hubs, and extend the algorithm to collect statistics of the entropy. The theoretical results are compared with the extremal optimization results.
Across many scientific and engineering disciplines, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we study the robustness of the ground states of $pm J$ spin glasses on random graphs to flips of the interactions. For a sparse graph, a dense graph, and the fully connected Sherrington-Kirkpatrick model, we find relatively large sets of interactions that generate the same ground state. These sets can themselves be analyzed as sub-graphs of the interaction domain, and we compute many of their topological properties. In particular, we find that the robustness of these sub-graphs is much higher than one would expect from a random model. Most notably, it scales in the same logarithmic way with the size of the sub-graph as has been found in genotype-phenotype maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for models for genetic programming. The similarity between these disparate systems suggests that this scaling may have a more universal origin.
We investigate the performance of the recently proposed stationary Fokker-Planck sampling method considering a combinatorial optimization problem from statistical physics. The algorithmic procedure relies upon the numerical solution of a linear second order differential equation that depends on a diffusion-like parameter D. We apply it to the problem of finding ground states of 2d Ising spin glasses for the +-J-Model. We consider square lattices with side length up to L=24 with two different types of boundary conditions and compare the results to those obtained by exact methods. A particular value of D is found that yields an optimal performance of the algorithm. We compare this optimal value of D to a percolation transition, which occurs when studying the connected clusters of spins flipped by the algorithm. Nevertheless, even for moderate lattice sizes, the algorithm has more and more problems to find the exact ground states. This means that the approach, at least in its standard form, seems to be inferior to other approaches like parallel tempering.
We present a detailed proof of a previously announced result (C.M. Newman and D.L. Stein, Phys. Rev. Lett. v. 84, pp. 3966--3969 (2000)) supporting the absence of multiple (incongruent) ground state pairs for 2D Edwards-Anderson spin glasses (with zero external field and, e.g., Gaussian couplings): if two ground state pairs (chosen from metastates with, e.g., periodic boundary conditions) on the infinite square lattice are distinct, then the dual bonds where they differ form a single doubly-infinite, positive-density domain wall. It is an open problem to prove that such a situation cannot occur (or else to show --- much less likely in our opinion --- that it indeed does happen) in these models. Our proof involves an analysis of how (infinite-volume) ground states change as (finitely many) couplings vary, which leads us to a notion of zero-temperature excitation metastates, that may be of independent interest.
In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice (RL), consisting of the bonds that retain their frustration (or lack of it) in all ground states. In this work we have performed a detailed numerical study of the properties of the RL, both in two-dimensional (2D) and three-dimensional (3D) lattices. Whereas in 3D we find strong evidence for percolation in the thermodynamic limit, in 2D our results indicate that the most probable scenario is that the RL does not percolate. On the other hand, both in 2D and 3D we find that frustration is very unevenly distributed. Frustration is much lower in the RL than in its complement. Using equilibrium simulations we observe that this property can be found even above the critical temperature. This leads us to propose that the RL should share many properties of ferromagnetic models, an idea that recently has also been proposed in other contexts. We also suggest a preliminary generalization of the definition of backbone for systems with continuous distributions of bonds, and we argue that the study of this structure could be useful for a better understanding of the low temperature phase of those frustrated models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا