Do you want to publish a course? Click here

Resistance noise scaling in a 2D system in GaAs

53   0   0.0 ( 0 )
 Added by L'Hote
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 1/f resistance noise of a two-dimensional (2D) hole system in a high mobility GaAs quantum well has been measured on both sides of the 2D metal-insulator transition (MIT) at zero magnetic field (B=0), and deep in the insulating regime. The two measurement methods used are described: I or V fixed, and measurement of resp. V or I fluctuations. The normalized noise magnitude SR/R^2 increases strongly when the hole density is decreased, and its temperature (T) dependence goes from a slight increase with T at the largest densities, to a strong decrease at low density. We find that the noise magnitude scales with the resistance, SR /R^2 ~ R^2.4. Such a scaling is expected for a second order phase transition or a percolation transition. The possible presence of such a transition is investigated by studying the dependence of the conductivity as a function of the density. This dependence is consistent with a critical behavior close to a critical density p* lower than the usual MIT critical density pc.



rate research

Read More

We have measured the resistance noise of a two-dimensional (2D)hole system in a high mobility GaAs quantum well, around the 2D metal-insulator transition (MIT) at zero magnetic field. The normalized noise power $S_R/R^2$ increases strongly when the hole density p_s is decreased, increases slightly with temperature (T) at the largest densities, and decreases strongly with T at low p_s. The noise scales with the resistance, $S_R/R^2 sim R^{2.4}$, as for a second order phase transition such as a percolation transition. The p_s dependence of the conductivity is consistent with a critical behavior for such a transition, near a density p* which is lower than the observed MIT critical density p_c.
200 - L. Fruchter , H. Raffy , Z.Z. Li 2007
The resistance noise in a Bi_2Sr_2CaCu_2O$_{8+delta}$ thin film is found to increase strongly in the underdoped regime. While the increase of the raw resistance noise with decreasing temperature appears to roughly track the previously reported pseudogap temperature for this material, standard noise analysis rather suggests that the additional noise contribution is driven by the proximity of the superconductor-insulator transition.
A study of the conductance noise in a two-dimensional electron system (2DES) in Si at low temperatures (T) reveals the onset of large, non-Gaussian noise after cooling from an equilibrium state at a high T with a fixed carrier density n_s. This behavior, which signifies the falling out of equilibrium of the 2DES as T->0, is observed for n_s<n_g (n_g - glass transition density). A protocol where density is changed by a small value Delta n_s at low T produces the same results for the noise power spectra. However, a detailed analysis of the non-Gaussian probability density functions (PDFs) of the fluctuations reveals that Delta n_s has a qualitatively different and more dramatic effect than Delta T, suggesting that Delta n_s induces strong changes in the free energy landscape of the system as a result of Coulomb interactions. The results from a third, waiting-time (t_w) protocol, where n_s is changed temporarily during t_w by a large amount, demonstrate that non-Gaussian PDFs exhibit history dependence and an evolution towards a Gaussian distribution as the system ages and slowly approaches equilibrium. By calculating the power spectra and higher-order statistics for the noise measured over a wide range of the applied voltage bias, it is established that the non-Gaussian noise is observed in the regime of Ohmic or linear response, i.e. that it is not caused by the applied bias.
The relaxations of conductivity have been studied in a strongly disordered two-dimensional (2D) electron system in Si after excitation far from equilibrium by a rapid change of carrier density n_s at low temperatures T. The dramatic and precise dependence of the relaxations on n_s and T strongly suggests (a) the transition to a glassy phase as T->0, and (b) the Coulomb interactions between 2D electrons play a dominant role in the observed out-of-equilibrium dynamics.
Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional electron system (2DES) in Si in the vicinity of the metal-insulator transition (MIT) persists in parallel magnetic fields B of up to 9 T. At low B, both the glass transition density $n_g$ and $n_c$, the critical density for the MIT, increase with B such that the width of the metallic glass phase ($n_c<n_s<n_g$) increases with B. At higher B, where the 2DES is spin polarized, $n_c$ and $n_g$ no longer depend on B. Our results demonstrate that charge, as opposed to spin, degrees of freedom are responsible for glassy ordering of the 2DES near the MIT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا