The fundamental magnetic interactions of Pr$_{2}$Fe$_{17}$ are studied by inelastic neutron scattering and anisotropy field measurements. Data analysis confirms the presence of three magnetically inequivalent sites, and reveals an exceptionally large value of the exchange field. The unexpected importance of $J$-mixing effects in the description of the ground-state properties of Pr$_{2}$Fe$_{17}$ is evidenced, and possible applications of related compounds are envisaged.
The physical characterisation and understanding of molecular magnetic materials is one of the most important steps towards the integration of such systems in hybrid spintronic devices. Amongst the many characterisation techniques employed in such a task, Inelastic Neutron Scattering (INS) stands as one of the most powerful and sensitive tools to investigate their spin dynamics. Herein, the magnetic properties and spin dynamics of two dinuclear complexes, namely [(M(hfacac)$_2$)$_2$(bpym)] (where M = Ni$^{2+}$, Co$^{2+}$, abbreviated in the following as Ni$_2$, Co$_2$) are reported. These are model systems that could constitute fundamental units of future spintronic devices. By exploiting the highly sensitive IN5 Cold INS spectrometer, we are able to gain a deep insight into the spin dynamics of Ni$_2$ and to fully obtain the microscopic spin Hamiltonian parameters; while for Co$_2$, a multitude of INS transitions are observed demonstrating the complexity of the magnetic properties of octahedral cobalt-based systems.
To understand spin interactions in materials of the Cu$_2$Sb structure type, inelastic neutron scattering of Fe$_2$As single crystals was examined at different temperatures and incident neutron energies. The experimental phonon spectra match well with the simulated phonon spectra obtained from density functional theory (DFT) calculations. The measured magnon spectra were compared to the simulated magnon spectra obtained via linear spin wave theory with the exchange coupling constants calculated using the spin polarized, relativistic Korringa-Kohn-Rostoker method in Zhang et al. (2013). The simulated magnon spectra broadly agree with the experimental data although, the energy values are underestimated along the $K$ direction. Exchange coupling constants between Fe atoms were refined by fits to the experimental magnon spectra, revealing stronger nearest neighbor Fe1-Fe1 exchange coupling than previously reported. The strength of this exchange coupling is almost an order of magnitude higher than other exchange interactions despite the three-dimensional nature of the phonon interactions. The lack of scattering intensity at energies above 60 meV makes unconstrained determination of the full set of exchange interactions difficult, which may be a fundamental challenge in metallic antiferromagnets.
By the single crystal inelastic neutron scattering the orthoferrite HoFeO3 was studied. We show that the spin dynamics of the Fe subsystem does not change through the spin-reorientation transitions. The observed spectrum of magnetic excitations was analyzed in the frames of linear spin-wave theory. Within this approach the antiferromagnetic exchange interactions of nearest neighbors and next nearest neighbors were obtained for Fe subsystem. Parameters of Dzyaloshinskii-Moriya interactions at Fe subsystem were refined. The temperature dependence of the gap in Fe spin-wave spectrum indicates the temperature evolution of the anisotropy parameters. The estimations for the values of Fe-Ho and Ho-Ho exchange interaction were made as well.
We present an investigation into the intrinsic magnetic properties of the compounds YCo5 and GdCo5, members of the RETM5 class of permanent magnets (RE = rare earth, TM = transition metal). Focusing on Y and Gd provides direct insight into both the TM magnetization and RE-TM interactions without the complication of strong crystal field effects. We synthesize single crystals of YCo5 and GdCo5 using the optical floating zone technique and measure the magnetization from liquid helium temperatures up to 800 K. These measurements are interpreted through calculations based on a Greens function formulation of density-functional theory, treating the thermal disorder of the local magnetic moments within the coherent potential approximation. The rise in the magnetization of GdCo5 with temperature is shown to arise from a faster disordering of the Gd magnetic moments compared to the antiferromagnetically aligned Co sublattice. We use the calculations to analyze the different Curie temperatures of the compounds and also compare the molecular (Weiss) fields at the RE site with previously published neutron scattering experiments. To gain further insight into the RE-TM interactions, we perform substitutional doping on the TM site, studying the compounds RECo4.5Ni0.5, RECo4Ni, and RECo4.5Fe0.5. Both our calculations and experiments on powdered samples find an increased/decreased magnetization with Fe/Ni doping, respectively. The calculations further reveal a pronounced dependence on the location of the dopant atoms of both the Curie temperatures and the Weiss field at the RE site.
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very recently, the experimental observation of ferromagnetism in Cr$_2$Ge$_2$Te$_6$ bilayer and CrI$_3$ monolayer opened a door to pursuit long-absent intrinsic magnetic orders in two-dimensional materials. Meanwhile, the ferroelectricity was also experimentally found in SnTe monolayer and CuInP$_2$S$_6$ few layers. The emergence of these ferroic orders in the two-dimensional limit not only brings new challenges to our physical knowledge, but also provides more functionalities for potential applications. Among various two-dimensional ferroic ordered materials, transition/rare-earth metal halides and their derivants are very common. In this Research Update, based on transition/rare-earth metal halides, the physics of various ferroic orders in two-dimensional will be illustrated. The potential applications based on their magnetic and polar properties will also be discussed.