Do you want to publish a course? Click here

A new type of charged defect in amorphous chalcogenides

91   0   0.0 ( 0 )
 Added by Sergei Simdyankin
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on density-functional-based tight-binding (DFTB) simulations of a series of amorphous arsenic sulfide models. In addition to the charged coordination defects previously proposed to exist in chalcogenide glasses, a novel defect pair, [As4]--[S3]+, consisting of a four-fold coordinated arsenic site in a seesaw configuration and a three-fold coordinated sulfur site in a planar trigonal configuration, was found in several models. The valence-alternation pairs S3+-S1- are converted into [As4]--[S3]+ pairs under HOMO-to-LUMO electronic excitation. This structural transformation is accompanied by a decrease in the size of the HOMO-LUMO band gap, which suggests that such transformations could contribute to photo-darkening in these materials.



rate research

Read More

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of sustained research interest due to their extraordinary electronic and optical properties. They also exhibit a wide range of structural phases because of the different orientations that the atoms can have within a single layer, or due to the ways that different layers can stack. Here we report the first study of direct-visualization of structural transformations in atomically-thin layers under highly non-equilibrium thermodynamic conditions. We probe these transformations at the atomic scale using real-time, aberration corrected scanning transmission electron microscopy and observe strong dependence of the resulting structures and phases on both heating rate and temperature. A fast heating rate (25 C/sec) yields highly ordered crystalline hexagonal islands of sizes of less than 20 nm which are composed of a mixture of 2H and 3R phases. However, a slow heating rate (25 C/min) yields nanocrystalline and sub-stoichiometric amorphous regions. These differences are explained by different rates of sulfur evaporation and redeposition. The use of non-equilibrium heating rates to achieve highly crystalline and quantum-confined features from 2D atomic layers present a new route to synthesize atomically-thin, laterally confined nanostrucutres and opens new avenues for investigating fundamental electronic phenomena in confined dimensions.
54 - F. Budde , B.J. Ruck , A. Koo 2004
Ion assisted deposition (IAD) has been investigated for the growth of GaN, and the resulting films studied by x-ray diffraction and absorption spectroscopy and by transmission electron microscopy. IAD grown stoichiometric GaN consists of random-stacked quasicrystals of some 3 nm diameter. Amorphous material is formed only by incorporation of 15% or more oxygen, which we attribute to the presence of non-tetrahedral bonds centered on oxygen. The ionic favourability of heteropolar bonds and its strikingly simple constraint to even-membered rings is the likely cause of the instability of stoichiometric a-GaN.
Chalcogenide alloys are materials of interest for optical recording and non-volatile memories. We perform ab-initio molecular dynamics simulations aiming at shading light onto the structure of amorphous Ge2Sb2Te5 (GST), the prototypical material in this class. First principles simulations show that amorphous GST obtained by quenching from the liquid phase displays two types of short range order. One third of Ge atoms are in a tetrahedral environment while the remaining Ge, Sb and Te atoms display a defective octahedral environment, reminiscent of cubic crystalline GST.
Perovskite oxides form an eclectic class of materials owing to their structural flexibility in accommodating cations of different sizes and valences. They host well known point and planar defects, but so far no line defect has been identified other than dislocations. Using analytical scanning transmission electron microscopy (STEM) and ab initio calculations we have detected and characterized the atomic and electronic structures of a novel line defect in NdTiO3 perovskite. It appears in STEM images as a perovskite cell rotated by 45 degrees. It consists of self-organized Ti-O vacancy lines replaced by Nd columns surrounding a central Ti-O octahedral chain containing Ti4+ ions, as opposed to Ti3+ in the host. The distinct Ti valence in this line defect introduces the possibility of engineering exotic conducting properties in a single preferred direction and tailoring novel desirable functionalities in this Mott insulator.
The local nuclear and magnetic structure of wustite, Fe1-xO, and the coupling between them, has been examined using reverse Monte Carlo refinements of variable-temperature neutron total scattering data. The results from this analysis suggest that the individual units in a tetrahedral defect cluster are connected along <110> vectors into a Koch-Cohen-like arrangement, with the majority of octahedral vacancies concentrated near these defects. Bond valence calculations indicate a change in the charge distribution on the cations with the charge on the tetrahedral interstitials increasing on cooling. The magnetic structure is more complex than previously thought, corresponding to a non-collinear spin arrangement described by a superposition of a condensed spin wave on the established type-II antiferromagnetic ordering. This leads to an architecture with four groups of cations each with different spin directions. The cations within the interstitial clusters appear to be weakly ferromagnetically coupled and their spins are correlated to the spins of the octahedral cations closest to them. This work not only provides further insight into the local structure of wustite but also a better understanding of the coupling between defect structures and magnetic and charge-ordering in complex materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا