Do you want to publish a course? Click here

Wide energy-window view on the density of states and hole mobility of poly(p-phenylene vinylene)

88   0   0.0 ( 0 )
 Added by Iulian Hulea
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using an electrochemically gated transistor, we achieved controlled and reversible doping of poly(p-phenylene vinylene) in a large concentration range. Our data open a wide energy-window view on the density of states (DOS) and show, for the first time, that the core of the DOS function is Gaussian, while the low-energy tail has a more complex structure. The hole mobility increases by more than four orders of magnitude when the electrochemical potential is scanned through the DOS.

rate research

Read More

The two-state molecular orbital model of the one-dimensional phenyl-based semiconductors is applied to poly(p-phenylene vinylene). The energies of the low-lying excited states are calculated using the density matrix renormalization group method. Calculations of both the exciton size and the charge gap show that there are both Bu and Ag excitonic levels below the band threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94 eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13 phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to decrease due to solvation effects. The lowest triplet state is calculated to be at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison between theory, and two-photon absorption and electroabsorption is made, leading to a consistent picture of the essential states responsible for most of the third-order nonlinear optical properties. An interpretation of the experimental nonlinear optical spectroscopies suggests an energy difference of ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed energy, of the 1Bu exciton and the band gap, respectively.
The low-lying singlet and triplet spectrum in conjugated polymers clearly show that the mechanism proposed by Lin et al. to explain their electric field dependence of singlet to triplet yield ratios is wrong. This comment, from theoretical spectrum obtained for long polyenes, shows that the phonon bottleneck proposed by Lin et al. for triplets in polyenes cannot exist.
Ground state properties and excited states of ladder-type paraphenylene oligomers are calculated applying semiempirical methods for up to eleven phenylene rings. The results are in qualitative agreement with experimental data. A new scheme to interpret the excited states is developed which reveals the excitonic nature of the excited states. The electron-hole pair of the S1-state has a mean distance of approximately 4 Angstroem.
104 - W. So 2006
We develop a broadly applicable transport-based technique, GAte Modulated activation Energy Spectroscopy (GAMEaS), for determining the density of states (DOS) in the energy gap. GAMEaS is applied to field effect transistors made from different single crystal oligomer semiconductors to extract the free-carrier mobility, u_0, from the field effect mobility, u_eff. Samples with a lower DOS exhibit higher u_eff. Values of u_0 up to 100 +/- 40 cm2/Vs at 300K are observed, showing that performance can be greatly enhanced by improving sample purity and crystal quality.
The strongly-contracted variant of second order N -electron valence state perturbation theory (NEVPT2) is an efficient perturbative method to treat dynamic correlation without the problems of intruder states or level shifts, while the density matrix renormalization group (DMRG) provides the capability to tackle static correlation in large active spaces. We present a combination of the DMRG and strongly-contracted NEVPT2 (DMRG-SC-NEVPT2) that uses an efficient algorithm to compute high order reduced density matrices from DMRG wave functions. The capabilities of DMRG-SC-NEVPT2 are demonstrated on calculations of the chromium dimer potential energy curve at the basis set limit, and the excitation energies of poly-p-phenylene vinylene trimer (PPV(n=3)).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا