Do you want to publish a course? Click here

Non-ideal artificial phase discontinuity in long Josephson 0-kappa-junctions

53   0   0.0 ( 0 )
 Added by Edward Goldobin
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the creation of an arbitrary $kappa$-discontinuity of the Josephson phase in a long Nb-AlO_x-Nb Josephson junction (LJJ) using a pair of tiny current injectors, and study the formation of fractional vortices formed at this discontinuity. The current I_inj, flowing from one injector to the other, creates a phase discontinuity kappa ~ I_inj. The calibration of injectors is discussed in detail. The small but finite size of injectors leads to some deviations of the properties of such a 0-kappa-LJJ from the properties of a LJJ with an ideal kappa-discontinuity. These experimentally observed deviations in the dependence of the critical current on I_inj$ and magnetic field can be well reproduced by numerical simulation assuming a finite injector size. The physical origin of these deviations is discussed.



rate research

Read More

151 - E. Goldobin , A. Sterck , T. Gaber 2003
We propose, implement and test experimentally long Josephson 0-pi junctions fabricated using conventional Nb-AlOx-Nb technology. We show that using a pair of current injectors, one can create an arbitrary discontinuity of the Josephson phase and in particular a pi-discontinuity, just like in d-wave/s-wave or in d-wave/d-wave junctions, and study fractional Josephson vortices which spontaneously appear. Moreover, using such junctions, we can investigate the emph{dynamics} of the fractional vortices -- a domain which is not yet available for natural 0-pi-junctions due to their inherently high damping. We observe half-integer zero-field steps which appear on the current-voltage characteristics due to hopping of semifluxons.
Fractional Josephson vortices carry a magnetic flux Phi, which is a fraction of the magnetic flux quantum Phi_0 ~ 2.07x10^{-15} Wb. Their properties are very different from the properties of the usual integer fluxons. In particular, fractional vortices are pinned and have an oscillation eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux $Phi$ and on the bias current. The experimental results are in good agreement with the theoretical predictions.
We present a study on low-$T_c$ superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson junctions. SIFS junctions have gained considerable interest in recent years because they show a number of interesting properties for future classical and quantum computing devices. We optimized the fabrication process of these junctions to achieve a homogeneous current transport, ending up with high-quality samples. Depending on the thickness of the ferromagnetic layer and on temperature, the SIFS junctions are in the ground state with a phase drop either 0 or $pi$. By using a ferromagnetic layer with variable step-like thickness along the junction, we obtained a so-called 0-$pi$ Josephson junction, in which 0 and $pi$ ground states compete with each other. At a certain temperature the 0 and $pi$ parts of the junction are perfectly symmetric, i.e. the absolute critical current densities are equal. In this case the degenerate ground state corresponds to a vortex of supercurrent circulating clock- or counterclockwise and creating a magnetic flux which carries a fraction of the magnetic flux quantum $Phi_0$.
We report that spin supercurrents can be induced in diffusive SFS Josephson junctions without any magnetic misalignment or intrinsic spin orbit coupling. Instead, the pathway to spin triplet generation is provided via geometric curvature, and results in a long ranged Josephson effect. In addition, the curvature is shown to induce a dynamically tunable $0-pi$ transition in the junction. We provide the analytic framework and discuss potential experimental and innovation implications.
We study fermion-parity-changing quantum phase transitions (QPTs) in platform Josephson junctions. These QPTs, associated with zero-energy bound states, are rather widely observed experimentally. They emerge from numerical calculations frequently without detailed microscopic insight. Importantly, they may incorrectly lend support to claims for the observations of Majorana zero modes. In this paper we present a fully consistent solution of the Bogoliubov-de Gennes equations for a multi-component Josephson junction. This provides insights into the origin of the QPTs. It also makes it possible to assess the standard self energy approximations which are widely used to understand proximity coupling in topological systems. The junctions we consider are complex and chosen to mirror experiments. Our full proximity calculations associate the mechanism behind the QPT as deriving from a spatially extended, proximity-induced magnetic defect. This defect arises because of the insulating region which effects a local reorganization of the bulk magnetization in the proximitized superconductor. Our results suggest more generally that QPTs in Josephson junctions generally do not require the existence of spin-orbit coupling and should not be confused with, nor are they indicators of, Majorana physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا