A theoretical and experimental study of the fragmentation of closed thin shells made of a disordered brittle material is presented. Experiments were performed on brown and white hen egg-shells under two different loading conditions: fragmentation due to an impact with a hard wall and explosion by a combustion mixture giving rise to power law fragment size distributions. For the theoretical investigations a three-dimensional discrete element model of shells is constructed. Molecular dynamics simulations of the two loading cases resulted in power law fragment mass distributions in satisfactory agreement with experiments. Based on large scale simulations we give evidence that power law distributions arise due to an underlying phase transition which proved to be abrupt and continuous for explosion and impact, respectively. Our results demonstrate that the fragmentation of closed shells defines a universality class different from that of two- and three-dimensional bulk systems.
The interplay between quantum fluctuations and disorder is investigated in a spin-glass model, in the presence of a uniform transverse field $Gamma$, and a longitudinal random field following a Gaussian distribution with width $Delta$. The model is studied through the replica formalism. This study is motivated by experimental investigations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, where the application of a transverse magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic susceptibility $chi_3$, which have led to a considerable experimental and theoretical debate. We analyzed two situations, namely, $Delta$ and $Gamma$ considered as independent, as well as these two quantities related as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature $T_f$; moreover, $T_f$ decreases by increasing $Gamma$ towards a quantum critical point at zero temperature. The situation where $Delta$ and $Gamma$ are related appears to reproduce better the experimental observations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, with the theoretical results coinciding qualitatively with measurements of the nonlinear susceptibility. In this later case, by increasing $Gamma$, $chi_3$ becomes progressively rounded, presenting a maximum at a temperature $T^*$ ($T^*>T_f$). Moreover, we also show that the random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside the paramagnetic phase, leading to two regimes delimited by the temperature $T^*$, one for $T_f<T<T^*$, and another one for $T>T^*$. It is argued that the conventional paramagnetic state corresponds to $T>T^*$, whereas the temperature region $T_f<T<T^*$ may be characterized by a rather unusual dynamics, possibly including Griffiths singularities.
We study the growth of random networks under a constraint that the diameter, defined as the average shortest path length between all nodes, remains approximately constant. We show that if the graph maintains the form of its degree distribution then that distribution must be approximately scale-free with an exponent between 2 and 3. The diameter constraint can be interpreted as an environmental selection pressure that may help explain the scale-free nature of graphs for which data is available at different times in their growth. Two examples include graphs representing evolved biological pathways in cells and the topology of the Internet backbone. Our assumptions and explanation are found to be consistent with these data.
The goal of the present work is to investigate the role of trivial disorder and nontrivial disorder in the three-state Hopfield model under a Gaussian random field. In order to control the nontrivial disorder, the Hebb interaction is used. This provides a way to control the system frustration by means of the parameter a=p/N, varying from trivial randomness to a highly frustrated regime, in the thermodynamic limit. We performed the thermodynamic analysis using the one-step replica-symmetry-breaking mean field theory to obtain the order parameters and phase diagrams for several strengths of a, the anisotropy constant, and the random field.
We present a fully {it ab initio}, non-perturbative, time-dependent approach to describe single and double ionization of helium by proton and antiproton impact. A flexible and accurate finite-element discrete-variable-representation is applied to discretize the problem on the radial grid in spherical coordinates. Good agreement with the most recent experimental data for absolute angle-integrated cross sections is obtained over a wide range of incident projectile energies between 3 keV and 6 MeV. Furthermore, angle-differential cross sections for two-electron ejection are predicted for a proton impact energy of 6 MeV. Finally, the time evaluation of the ionization process is portrayed by displaying the electron density as a function of the projectile location.
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time $T$ in random networks, and find a scaling law which relates $T$ to networks connectivity. Then, we carry on comparing synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than any other disordered network. The fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to have a non-random topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.