No Arabic abstract
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destinations, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. Here we explore these biases and provide a statistical analysis of their origin. We derive a mean-field analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular we find that the edge and vertex detection probability is depending on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with scale-free topology. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in different network models. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. The numerical study also allows the identification of intervals of the exploration parameters that optimize the fraction of nodes and edges discovered in the sampled graph. This finding might hint the steps toward more efficient mapping strategies.
We develop a microscopic approach to the consistent construction of the kinetic theory of dilute weakly ionized gases of hydrogen-like atoms. The approach is based on the framework of the second quantization method in the presence of bound states of particles and the method of reduced description of relaxation processes. Within the approach we developed the first-order perturbation theory over the weak interaction for a system of kinetic equations for the Wigner distribution functions of free fermions of both kinds and their bound states, the hydrogen-like atoms. It is shown that the conditions of low-temperature approximation, of the gas non-degeneracy and the approximation of weak interaction are realistic and can be met in a wide range of temperatures and the densities of the studied system. We obtain dispersion equations for determining the frequency and wave attenuation coefficients in dilute weakly ionized gas of hydrogen-like atoms near the described equilibrium state. In the two-level atom approximation it is shown that in the system there are longitudinal waves of matter polarization and transverse waves with the behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequency and the Landau damping coefficients on the wave vector for all branches of the oscillations detected, are obtained. Quantitative estimations of the characteristics of the elementary perturbations in the system on an example of a weakly ionized dilute gas of Na-23 atoms are presented. The possibility of using the results of the theory developed to describe the properties of a Bose condensate of photons in dilute weakly ionized gas of hydrogen-like atoms is noted and the directions of its generalizations are discussed.
We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the method of statistical field theory. This approach enables us to relate the coefficients $A$, $B$, $C$, $L_1$ and $L_2$ of the Landau-de Gennes free energy for the isotropic-nematic phase transition to the parameters of a molecular model of uniaxial nematics, which we take to be a lattice gas model of nematogenic molecules interacting via a short-ranged potential. We obtain general constraints on the temperature and volume fraction of nematogens for the Landau-de Gennes theory to be stable against molecular orientation fluctuations at quartic order. In particular, for the case of a fully occupied lattice, we compute the values of the isotropic-nematic transition temperature and the order parameter discontinuity predicted by (i) a continuum approximation of the nearest-neighbor Lebwohl-Lasher model and (ii) a Lebwohl-Lasher-type model with a nematogenic interaction of finite range. We find that the predictions of (i) are in reasonably good agreement with known results of MC simulation.
A geometric approach to the friction phenomena is presented. It is based on the holographic view which has recently been popular in the theoretical physics community. We see the system in one-dimension-higher space. The heat-producing phenomena are most widely treated by using the non-equilibrium statistical physics. We take 2 models of the earthquake. The dissipative systems are here formulated from the geometric standpoint. The statistical fluctuation is taken into account by using the (generalized) Feynmans path-integral.
The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling $G$ between twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here, the effect of $G$ on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness $C_text{eff}$ for small twist-bend coupling. We find that the bare $G$ is screened by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with $G=0$, but with long-wavelength bending and twisting rigidities that are shifted by $G$-dependent amounts. Using results for torsional and bending rigidities for freely-fluctuating DNA, we show how our perturbative results can be extended to a non-perturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo triad and molecular dynamics oxDNA models, characterized by different degrees of coarse-graining, validating the perturbative and non-perturbative analyses. While our theory is in generally-good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely-used coarse-grained models.
We study the derivation of macroscopic traffic models from car-following vehicle dynamics by means of hydrodynamic limits of an Enskog-type kinetic description. We consider the superposition of Follow-the-Leader (FTL) interactions and relaxation towards a traffic-dependent Optimal Velocity (OV) and we show that the resulting macroscopic models depend on the relative frequency between these two microscopic processes. If FTL interactions dominate then one gets an inhomogeneous Aw-Rascle-Zhang model, whose (pseudo) pressure and stability of the uniform flow are precisely defined by some features of the microscopic FTL and OV dynamics. Conversely, if the rate of OV relaxation is comparable to that of FTL interactions then one gets a Lighthill-Whitham-Richards model ruled only by the OV function. We further confirm these findings by means of numerical simulations of the particle system and the macroscopic models. Unlike other formally analogous results, our approach builds the macroscopic models as physical limits of particle dynamics rather than assessing the convergence of microscopic to macroscopic solutions under suitable numerical discretisations.