Do you want to publish a course? Click here

Tuning the scattering length with an optically induced Feshbach resonance

130   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by Fedichev {em et al.} [Phys. Rev. Lett. {bf 77}, 2913 (1996)]. In our experiment atoms in a $^{87}$Rb condensate are exposed to laser light which is tuned close to the transition frequency to an excited molecular state. By controlling the power and detuning of the laser beam we can change the atomic scattering length over a wide range. In view of laser-driven atomic losses we use Bragg spectroscopy as a fast method to measure the scattering length of the atoms.



rate research

Read More

We theoretically investigate the control of a magnetic Feshbach resonance using a bound-to-bound molecular transition driven by spatially modulated laser light. Due to the spatially periodic coupling between the ground and excited molecular states, there exists a band structure of bound states, which can uniquely be characterized by some extra bumps in radio-frequency spectroscopy. With the increasing of coupling strength, the series of bound states will cross zero energy and directly result in a number of scattering resonances, whose position and width can be conveniently tuned by the coupling strength of the laser light and the applied magnetic field (i.e., the detuning of the ground molecular state). In the presence of the modulated laser light, universal two-body bound states near zero-energy threshold still exist. However, compared with the case without modulation, the regime for such universal states is usually small. An unified formula which embodies the influence of the modulated coupling on the resonance width is given. The spatially modulated coupling also implies a local spatially varying interaction between atoms. Our work proposes a practical way of optically controlling interatomic interactions with high spatial resolution and negligible atomic loss.
113 - J. Fransson , M.-G. Kang , Y. Yoon 2014
Through a combination of experiment and theory we establish the possibility of achieving strong tuning of Fano resonances (FRs), by allowing their usual two-path geometry to interfere with an additional, intruder, continuum. As the coupling strength to this intruder is varied, we predict strong modulations of the resonance line shape that, in principle at least, may exceed the amplitude of the original FR itself. For a proof-of-concept demonstration of this phenomenon, we construct a nanoscale interferometer from nonlocally coupled quantum point contacts and utilize the unique features of their density of states to realize the intruder. External control of the intruder coupling is enabled by means of an applied magnetic field, in the presence of which we demonstrate the predicted distortions of the FR. This general scheme for resonant control should be broadly applicable to a variety of wave-based systems, opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.
Ultracold gases of interacting spin-orbit coupled fermions are predicted to display exotic phenomena such as topological superfluidity and its associated Majorana fermions. Here, we experimentally demonstrate a route to strongly-interacting single-component atomic Fermi gases by combining an s-wave Feshbach resonance (giving strong interactions) and spin-orbit coupling (creating an effective p-wave channel). We identify the Feshbach resonance by its associated atomic loss feature and show that, in agreement with our single-channel scattering model, this feature is preserved and shifted as a function of the spin-orbit coupling parameters.
We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (lambda=9.14 um and lambda=8.82 um). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at lambda=10 um wavelength. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, that is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, this work constitutes the first step towards the hopefully forthcoming demonstration of an intersubband polariton laser.
166 - J. Levinsen , N. R. Cooper , 2008
We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the lifetime of a 3D superfluid, in particular, we show that it decays at the same rate as its interaction energy, thus precluding its equilibration before it decays. Then we proceed to study its stability in case when the superfluid is confined to 2D by means of an optical harmonic potential. We find that the relative stability is somewhat improved in 2D in the BCS regime, such that the decay rate is now slower than the appropriate interaction energy scale. The improvement in stability, however, is not dramatic and one probably needs to look for other mechanisms to suppress decay to create a long lived 2D p-wave fermionic superfluid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا