Do you want to publish a course? Click here

Laser-Induced Above-Bandgap Transparency in GaAs

68   0   0.0 ( 0 )
 Added by Junichiro Kono
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the observation of large ($sim 40%$) laser-induced above-bandgap transparency in GaAs at room temperature. The induced transparency is present only during the pulse width of the driving midinfrard laser pulses and its spectral shape is consistent with a laser-induced blue shift of the band edge. Our simulations based on the dynamic Franz-Keldysh effect reproduce the salient features of the experimental results, demonstrating in particular that the amount of the band edge shift is approximately given by the ponderomtive potential.

rate research

Read More

237 - C. Sun , J. Kono , Y. Cho 2009
We have performed a systematic magneto-optical Kerr spectroscopy study of GaMnAs with varying Mn densities as a function of temperature, magnetic field, and photon energy. Unlike previous studies, the magnetization easy axis was perpendicular to the sample surface, allowing us to take remanent polar Kerr spectra in the absence of an external magnetic field. The remanent Kerr angle strongly depended on the photon energy, exhibiting a large positive peak at $sim1.7$ eV. This peak increased in intensity and blue-shifted with Mn doping and further blue-shifted with annealing. Using a 30-band ${bf kcdot p}$ model with antiferromagnetic $s,p$-$d$ exchange interaction, we calculated the dielectric tensor of GaMnAs in the interband transition region, assuming that our samples are in the metallic regime and the impurity band has merged with the valence band. We successfully reproduced the observed spectra without emph{ad hoc} introduction of the optical transitions originated from impurity states in the band gap. These results lead us to conclude that above-bandgap magneto-optical Kerr rotation in ferromagnetic GaMnAs is predominantly determined by interband transitions between the conduction and valence bands.
We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both metallic and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its intrinsic mechanism in ferromagnetic systems.
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on IR-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.
Using a magneto-optical pump-probe technique with micrometer spatial resolution we show that magnetization precession can be launched in individual magnetic domains imprinted in a Co$_{40}$Fe$_{40}$B$_{20}$ (CoFeB) layer by elastic coupling to ferroelectric domains in a BaTiO$_{3}$ substrate. The dependence of the precession parameters on external magnetic field strength and orientation reveal that by laser-induced ultrafast partial quenching of the magnetoelastic coupling parameter of CoFeB by $approx$27% along with 10% ultrafast demagnetization trigger the magnetization precession. The relation between the laser-induced reduction of the magnetoelastic coupling and the demagnetization is approximated by the $n(n+1)/2$-law with n$approx$2. This correspondence confirms the thermal origin of the laser-induced anisotropy change. Based on the analysis and modeling of the excited precession we find signatures of laser-induced precessional switching, which occurs when the magnetic field is applied along the hard magnetization axis and its value is close to the effective magnetoelastic anisotropy field. The precession excitation process in an individual magnetoelastic domain is found to be unaffected by neighboring domains. This makes laser-induced changes of magnetoelastic anisotropy a promising tool for driving magnetization dynamics and switching in composite multiferroics with spatial selectivity.
123 - J. Simon , Z. Zhang , K. Goodman 2009
The large electronic polarization in III-V nitrides allow for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-bandgap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-bandgap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا