No Arabic abstract
We compute the equilibrium concentration of stacking faults and point defects in polydisperse hard-sphere crystals. We find that, while the concentration of stacking faults remains similar to that of monodisperse hard sphere crystals, the concentration of vacancies decreases by about a factor two. Most strikingly, the concentration of interstitials in the maximally polydisperse crystal may be some six orders of magnitude larger than in a monodisperse crystal. We show that this dramatic increase in interstitial concentration is due to the increased probability of finding small particles and that the small-particle tail of the particle size distribution is crucial for the interstitial concentration in a colloidal crystal.
By extending the nonequilibrium potential refinement algorithm and lattice switch method to the semigrand ensemble, the semigrand potentials of the fcc and hcp structures of polydisperse hard-sphere crystals are calculated with the bias sampling scheme. The result shows that the fcc structure is more stable than the hcp structure for polydisperse hard-sphere crystals below the terminal polydispersity.
Coarse-graining atomic displacements in a solid produces both local affine strains and non-affine fluctuations. Here we study the equilibrium dynamics of these coarse grained quantities to obtain space-time dependent correlation functions. We show how a subset of these thermally excited, non-affine fluctuations act as precursors for the nucleation of lattice defects and suggest how defect probabilities may be altered by an {it experimentally realisable} external field conjugate to the global non-affinity parameter. Our results are amenable to verification in experiments on colloidal crystals using commonly available holographic laser tweezer and video microscopy techniques, and may lead to simple ways of controlling the defect density of a colloidal solid.
Colloidal crystals formed by size-asymmetric binary particles co-assemble into a wide variety of colloidal compounds with lattices akin to ionic crystals. Recently, a transition from a compound phase with a sublattice of small particles to a metal-like phase in which the small particles are delocalized has been predicted computationally and observed experimentally. In this colloidal metallic phase, the small particles roam the crystal maintaining the integrity of the lattice of large particles, as electrons do in metals. A similar transition also occurs in superionic crystals, termed sublattice melting. Here, we use energetic principles and a generalized molecular dynamics model of a binary system of functionalized nanoparticles to analyze the transition to sublattice delocalization in different co-assembled crystal phases as a function of T, number of grafted chains on the small particles, and number ratio between the small and large particles $n_s$:$n_l$. We find that $n_s$:$n_l$ is the primary determinant of crystal type due to energetic interactions and interstitial site filling, while the number of grafted chains per small particle determines the stability of these crystals. We observe first-order sublattice delocalization transitions as T increases, in which the host lattice transforms from low- to high-symmetry crystal structures, including A20 to BCT to BCC, Ad to BCT to BCC, and BCC to BCC/FCC to FCC transitions and lattices. Analogous sublattice transitions driven primarily by lattice vibrations have been seen in some atomic materials exhibiting an insulator-metal transition also referred to as metallization. We also find minima in the lattice vibrations and diffusion coefficient of small particles as a function of $n_s$:$n_l$, indicating enhanced stability of certain crystal structures for $n_s$:$n_l$ values that form compounds.
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) particles of a nearly constant swelling ratio and with polydispersity indices (PDIs) varying over a wide range (7.4% - 48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The PNIPAM particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). The zero shear viscosity ($eta_{0}$) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction $phi_{eff}$ of the suspensions, increases with increase in $phi_{eff}$ and shows a dramatic increase at $phi_{eff}=phi_{0}$. The data for $eta_{0}$ as a function of $phi_{eff}$ fits well to the Vogel-Fulcher-Tammann (VFT) equation. It is observed that increasing PDIs results in increasingly fragile supercooled liquid-like behavior, with the parameter $phi_{0}$, extracted from the fits to the VFT equation, shifting towards higher $phi_{eff}$. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in $phi_{0}$ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near $phi_{0}$ in Fourier transform oscillatory rheological experiments, increases with increase in PDIs. Our results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing PDIs.
Sublattice melting is the loss of order of one lattice component in binary or ternary ionic crystals upon increase in temperature. A related transition has been predicted in colloidal crystals. To understand the nature of this transition, we study delocalization in self-assembled, size asymmetric binary colloidal crystals using a generalized molecular dynamics model. Focusing on BCC lattices, we observe a smooth change from localized-to-delocalized interstitial particles for a variety of interaction strengths. Thermodynamic arguments, mainly the absence of a discontinuity in the heat capacity, suggest that the passage from localization-to-delocalization is continuous and not a phase transition. This change is enhanced by lattice vibrations, and the temperature of the onset of delocalization can be tuned by the strength of the interaction between the colloid species. Therefore, the localized and delocalized regimes of the sublattice are dominated by enthalpic and entropic driving forces, respectively. This work sets the stage for future studies of sublattice melting in colloidal systems with different stoichiometries and lattice types, and it provides insights into superionic materials, which have potential for application in energy storage technologies.