No Arabic abstract
Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the $J_1$-$J_2$ frustrated square-lattice antiferromagnet with $J_2={1/2}J_1$ and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into partially magnetized state is treated via a mapping to a dilute gas of hard core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave-vectors at $(pi,pi)$ and $(pi,0,0)$ for the two models. The asymptotic behavior of the magnetization curve differs significantly from that of conventional antiferromagnet in $d$-spatial dimensions. We predict a unique form for the magnetization curve $Delta M=S-Msimeq mu^{(d-1)/2}(logmu)^{(d-1)}$, where $mu$ is a distance from the quantum critical point.
Motivated by recent experiments on magnetically frustrated heavy fermion metals, we theoretically study the phase diagram of the Kondo lattice model with a nonmagnetic valence bond solid ground state on a ladder. A similar physical setting may be naturally occurring in YbAl$_3$C$_3$, CeAgBi$_2$, and TmB$_4$ compounds. In the insulating limit, the application of a magnetic field drives a quantum phase transition to an easy-plane antiferromagnet, which is described by a Bose-Einstein condensation of magnons. Using a combination of field theoretical techniques and density matrix renormalization group calculations we demonstrate that in one dimension this transition is stable in the presence of a metallic Fermi sea and its universality class in the local magnetic response is unaffected by the itinerant gapless fermions. Moreover, we find that fluctuations about the valence bond solid ground state can mediate an attractive interaction that drives unconventional superconducting correlations. We discuss the extensions of our findings to higher dimensions and argue that, depending on the filling of conduction electrons, the magnon Bose-Einstein condensation transition can remain stable in a metal also in dimensions two and three.
We predict that an external field can induce a spin order in highly frustrated classical Heisenberg magnets. We find analytically stabilization of collinear states by thermal fluctuations at a one-third of the saturation field for kagome and garnet lattices and at a half of the saturation field for pyrochlore and frustrated square lattices. This effect is studied numerically for the frustrated square-lattice antiferromagnet by Monte Carlo simulations for classical spins and by exact diagonalization for $S=1/2$. The field induced collinear states have a spin gap and produce magnetization plateaus.
We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at high wave numbers, and study propagation of the turbulent spectrum toward the low wave numbers. Our primary goal is to compare the results for the evolving spectrum with the previous results obtained for the kinetic equation of weak wave turbulence. We demonstrate existence of a regime for which good agreement with the wave turbulence results is found in terms of the main features of the previously discussed self-similar solution. In particular, we find a reasonable agreement with the low-frequency and the high-frequency power-law asymptotics of the evolving solution, including the anomalous power-law exponent $x^* approx 1.24$ for the three-dimensional waveaction spectrum. We also study the regimes of very weak turbulence, when the evolution is affected by the discreteness of the Fourier space, and the strong turbulence regime when emerging condensate modifies the wave dynamics and leads to formation of strongly nonlinear filamentary vortices.
Motivated by the recent synthesis of the spin-1 A-site spinel NiRh$_{text 2}$O$_{text 4}$, we investigate the classical to quantum crossover of a frustrated $J_1$-$J_2$ Heisenberg model on the diamond lattice upon varying the spin length $S$. Applying a recently developed pseudospin functional renormalization group (pf-FRG) approach for arbitrary spin-$S$ magnets, we find that systems with $S geq 3/2$ reside in the classical regime where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments $S$=1 or $S$=1/2 we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh$_{text 2}$O$_{text 4}$, a modified $J_1$-$J_2^-$-$J_2^perp$ exchange model is found to favor a conventionally ordered Neel state (for arbitrary spin $S$) even in the presence of a strong local single-ion spin anisotropy and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.
We have observed Bose-Einstein condensation of molecules. When a spin mixture of fermionic Li-6 atoms was evaporatively cooled in an optical dipole trap near a Feshbach resonance, the atomic gas was converted into Li_2 molecules. Below 600 nK, a Bose-Einstein condensate of up to 900,000 molecules was identified by the sudden onset of a bimodal density distribution. This condensate realizes the limit of tightly bound fermion pairs in the crossover between BCS superfluidity and Bose-Einstein condensation.