Do you want to publish a course? Click here

Resolution of two-dimensional Currents in Superconductors from a two-dimensional magnetic field measurement by the method of regularization

131   0   0.0 ( 0 )
 Added by D. Matthew Feldmann
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The problem of reconstructing a two-dimensional (2D) current distribution in a superconductor from a 2D magnetic field measurement is recognized as a first-kind integral equation and resolved using the method of Regularization. Regularization directly addresses the inherent instability of this inversion problem for non-exact (noisy) data. Performance of the technique is evaluated for different current distributions and for data with varying amounts of added noise. Comparisons are made to other methods, and the present method is demonstrated to achieve a better regularizing (noise filtering) effect while also employing the generalized-cross validation (GCV) method to choose the optimal regularization parameter from the data, without detailed knowledge of the true (and generally unknown) solution. It is also shown that clean, noiseless data is an ineffective test of an inversion algorithm.



rate research

Read More

We present a theory of magnetic response in a finite-size two-dimensional superconductors with Rashba spin-orbit coupling. The interplay between the latter and an in-plane Zeeman field leads on the one hand to an out-of-plane spin polarization which accumulates at the edges of the sample over the superconducting coherence length, and on the other hand, to circulating supercurrents decaying away from the edge over a macroscopic scale. In a long finite stripe of width W both, the spin polarization and the currents, contribute to the total magnetic moment induced at the stripe ends. These two contributions scale with W and W2 respectively, such that for sufficiently large samples it can be detected by current magnetometry techniques.
We have investigated vortex states in two-dimensional superconductors under a oscillating magnetic field from a chiral helimagnet. We have solved the two-dimensional Ginzburg-Landau equations with finite element method. We have found that when the magnetic field from the chiral helimagnet increases, vortices appear all at once in all periodic regions. This transition is different from that under the uniform magnetic field. Under the composite magnetic field with the oscillating and uniform fields (down-vortices), vortices antiparallel to the uniform magnetic field disappear. Then, the small uniform magnetic field easily remove down-vortices.
60 - V. R. Misko 2005
We study the critical depinning current J_c, as a function of the applied magnetic flux Phi, for quasiperiodic (QP) pinning arrays, including one-dimensional (1D) chains and two-dimensional (2D) arrays of pinning centers placed on the nodes of a five-fold Penrose lattice. In 1D QP chains of pinning sites, the peaks in J_c(Phi) are shown to be determined by a sequence of harmonics of long and short periods of the chain. This sequence includes as a subset the sequence of successive Fibonacci numbers. We also analyze the evolution of J_c(Phi) while a continuous transition occurs from a periodic lattice of pinning centers to a QP one; the continuous transition is achieved by varying the ratio gamma = a_S/a_L of lengths of the short a_S and the long a_L segments, starting from gamma = 1 for a periodic sequence. We find that the peaks related to the Fibonacci sequence are most pronounced when gamma is equal to the golden mean. The critical current J_c(Phi) in QP lattice has a remarkable self-similarity. This effect is demonstrated both in real space and in reciprocal k-space. In 2D QP pinning arrays (e.g., Penrose lattices), the pinning of vortices is related to matching conditions between the vortex lattice and the QP lattice of pinning centers. Although more subtle to analyze than in 1D pinning chains, the structure in J_c(Phi) is determined by the presence of two different kinds of elements forming the 2D QP lattice. Indeed, we predict analytically and numerically the main features of J_c(Phi) for Penrose lattices. Comparing the J_cs for QP (Penrose), periodic (triangular) and random arrays of pinning sites, we have found that the QP lattice provides an unusually broad critical current J_c(Phi), that could be useful for practical applications demanding high J_cs over a wide range of fields.
The diamagnetic susceptibility of a superconductor is directly related to its superfluid density. Mutual inductance is a highly sensitive method for characterizing thin films; however, in traditional mutual inductance measurements, the measured response is a non-trivial average over the area of the mutual inductance coils, which are typically of millimeter size. Here we image localized, isolated features in the diamagnetic susceptibility of {delta}-doped SrTiO3, the 2-DES at the interface between LaAlO3 and SrTiO3, and Nb superconducting thin film systems using scanning superconducting quantum interference device susceptometry, with spatial resolution as fine as 0.7 {mu}m. We show that these features can be modeled as locally suppressed superfluid density, with a single parameter that characterizes the strength of each feature. This method provides a systematic means of finding and quantifying submicron defects in two-dimensional superconductors.
126 - Li Mao , Hongxing Xu 2019
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-coupling (SOC), and the hybrid semiconductor and s-wave superconductor layers with strong SOC, we get the analytical results for longitudinal modes which are found to be indeed gapless. Further more, the effective modes volumes can be calculated, the electric and magnetic fields can be expressed as the creation and annihilation operators of such modes. So, one can study the interaction of them with other quasi-particles through fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا