Recent investigations of fractal conductance fluctuations (FCF) in electron billiards reveal crucial discrepancies between experimental behavior and the semiclassical Landauer-Buttiker (SLB) theory that predicted their existence. In particular, the roles played by the billiards geometry, potential profile and the resulting electron trajectory distribution are not well understood. We present measurements on two custom-made devices - a disrupted billiard device and a bilayer billiard device - designed to probe directly these three characteristics. Our results demonstrate that intricate processes beyond those proposed in the SLB theory are required to explain FCF.