Do you want to publish a course? Click here

Fluctuations in network dynamics

175   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most complex networks serve as conduits for various dynamical processes, ranging from mass transfer by chemical reactions in the cell to packet transfer on the Internet. We collected data on the time dependent activity of five natural and technological networks, finding that for each the coupling of the flux fluctuations with the total flux on individual nodes obeys a unique scaling law. We show that the observed scaling can explain the competition between the systems internal collective dynamics and changes in the external environment, allowing us to predict the relevant scaling exponents.



rate research

Read More

The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied for arbitrary temperature. By employing a probabilistic signal-to-noise approach, a recursive scheme is found determining the time evolution of the distribution of the local fields and, hence, the evolution of the order parameters. A comparison of this approach is made with the generating functional method, allowing to calculate any physical relevant quantity as a function of time. Explicit analytic formula are given in both methods for the first few time steps of the dynamics. Up to the third time step the results are identical. Some arguments are presented why beyond the third time step the results differ for certain values of the model parameters. Furthermore, fixed-point equations are derived in the stationary limit. Numerical simulations confirm our theoretical findings.
An inverse procedure is proposed and tested which aims at recovering the a priori unknown functional and structural information from global signals of living brains activity. To this end we consider a Leaky-Integrate and Fire (LIF) model with short term plasticity neurons, coupled via a directed network. Neurons are assigned a specific current value, which is heterogenous across the sample, and sets the firing regime in which the neuron is operating in. The aim of the method is to recover the distribution of incoming network degrees, as well as the distribution of the assigned currents, from global field measurements. The proposed approach to the inverse problem implements the reductionist Heterogenous Mean-Field approximation. This amounts in turn to organizing the neurons in different classes, depending on their associated degree and current. When tested again synthetic data, the method returns accurate estimates of the sought distributions, while managing to reproduce and interpolate almost exactly the time series of the supplied global field. Finally, we also applied the proposed technique to longitudinal wide-field fluorescence microscopy data of cortical functionality in groups of awake Thy1-GCaMP6f mice. Mice are induced a photothrombotic stroke in the primary motor cortex and their recovery monitored in time. An all-to-all LIF model which accommodates for currents heterogeneity allows to adequately explain the recorded patterns of activation. Altered distributions in neuron excitability are in particular detected, compatible with the phenomenon of hyperexcitability in the penumbra region after stroke.
71 - D. Bolle , P. Kozlowski 1998
An Ashkin-Teller neural network, allowing for two types of neurons is considered in the case of low loading as a function of the strength of the respective couplings between these neurons. The storage and retrieval of embedded patterns built from the two types of neurons, with different degrees of (in)dependence is studied. In particular, thermodynamic properties including the existence and stability of Mattis states are discussed. Furthermore, the dynamic behaviour is examined by deriving flow equations for the macroscopic overlap. It is found that for linked patterns the model shows better retrieval properties than a corresponding Hopfield model.
We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme. With the method developed here we confirm the value of the roughness exponent $zeta approx 0.2083 epsilon$ in order $epsilon$. Going beyond previous work, we demonstrate that this exponent is universal. In addition, we analyze the generation of higher cumulants in the disorder distribution and the role of temperature as a dangerously irrelevant variable.
We review three studies of information flow in social networks that help reveal their underlying social structure, how information spreads through them and why small world experiments work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا