Localization of a pair of bound particles in a random potential


Abstract in English

We study the localization length of a pair of two attractively bound particles moving in a one-dimensional random potential. We show in which way it depends on the interaction potential between the constituents of this composite particle. For a pair with many bound states N the localization length is proportional to N, independently of the form of the two particle interaction. For the case of two bound states we present an exact solution for the corresponding Fokker-Planck equation and demonstrate that the localization length depends sensitively on the shape of the interaction potential and the symmetry of the bound state wave functions.

Download