Do you want to publish a course? Click here

Thermal conductivity of solid parahydrogen with methane admixtures

117   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal conductivity of solid parahydrogen crystal with methane admixtures has been measured in the temperature range 1.5 to 8 K. Solid samples were grown from the gas mixture at 13 K. Concentration of CH4 admixture molecules in the gas varied form 5 to 570 ppm. A very broad maximum of thermal conductivity with absolute value of about 110 W/(m K) is observed at 2.6 K. The data are interpreted by Callaway model considering phonons resonant scattering on quasi-local vibrations of CH4 molecules, phonon-grain boundary and phonon-phonon scattering processes. The increase of grain boundary scattering leads to the decrease of the maximum broadening. The analysis shows that the solid mixture of p-H2 and CH4 is a heterogeneous solution for CH4 concentration higher than 0.1 ppm.



rate research

Read More

The effect of pressure on the thermal expansion of solid CH$_4$ is calculated for the low temperature region where the contributions from phonons and librons can be neglected and only the rotational tunnelling modes are essential. The effect of pressure is shown to increase the magnitude of the peaks of the negative thermal expansion and shifts the positions of the peaks to the low-temperature region, which goes asymptotically to zero temperature with increasing pressure. The Gruneisen thermodynamical parameter for the rotational tunnelling modes is calculated. It is large, negative, and increases in magnitude with rising pressure.
Management of heat during charging and discharging of Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the materials comprising batteries is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (oxides, sulfides, and halides) over the temperature range 150-350 K. Studies include the oxides Li1.5Al0.5Ge1.5(PO4)3 and Li6.4La3Zr1.4Ta0.6O12, sulfides Li2S-P2S5, Li6PS5Cl, and Na3PS4, and halides Li3InCl6 and Li3YCl6. Thermal conductivities of sulfide and halide solid electrolytes are in the range 0.45-0.70 W m-1 K-1; thermal conductivities of Li6.4La3Zr1.4Ta0.6O12 and Li1.5Al0.5Ge1.5(PO4)3 are 1.4 W m-1 K-1 and 2.2 W m-1 K-1, respectively. For most of the solid electrolytes studied in this work, the thermal conductivity increases with increasing temperature; i.e., the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating the phonon mean-free-paths in these solid electrolytes are close to an atomic spacing. We attribute the low, glass-like thermal conductivity of the solid electrolytes investigated to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.
The authors proposed a simple model for the lattice thermal conductivity of graphene in the framework of Klemens approximation. The Gruneisen parameters were introduced separately for the longitudinal and transverse phonon branches through averaging over phonon modes obtained from the first-principles. The calculations show that Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions of graphene flakes and can exceed that of the basal planes of bulk graphite when the flake size is on the order of few micrometers. The obtained results are in agreement with experimental data and reflect the two-dimensional nature of phonon transport in graphene.
Thermally conductive polymers are of fundamental interest and can also be exploited in thermal management applications. Recent studies have shown stretched polymers can achieve high thermal conductivity. However, the transport mechanisms of heat in thermally conductive polymers have yet to be elucidated. Here we report a method for scalable fabrication of polyethylene films with a high thermal conductivity of 62 W/m-K. The achieved thermal conductivity is over two orders-of-magnitude greater than that of typical polymers (~0.1 W/m-K), and exceeds those of many metals and ceramics used as traditional heat conductors. Careful structural studies are carried out and reveal that the film consists of nanofibers with crystalline and amorphous regions. Contrary to conventional wisdom, we reveal the importance of the amorphous morphology in achieving such high thermal conductivity, rather than simply from enhancements in the degree of crystallinity and crystallite alignment. The amorphous phase reaches a remarkably high thermal conductivity of ~16 W/m-K. Even still, we identify that the presence of this amorphous phase is the dominant factor as the film thermal conductivity is still much lower than the predicted values for bulk single-crystal polyethylene (237 K/m-K). This work lays the foundation for the rational design and synthesis of thermally conductive polymers, and opens up new opportunities for advanced heat management, particularly when flexible, lightweight, chemically inert and electrically insulating thermal conductors are desired.
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is measured from 13 K to 300 K using the 3{omega} method. Thermal conductivity is reduced by up to 2 orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1-8 W/mcdotK may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL quantum cascade lasers and high power light emitting diodes. We introduce a power-law approximation to model non-linearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا