No Arabic abstract
State engineering in nonlinear quantum dynamics sometimes may demand driving the system through a sequence of dynamically unstable intermediate states. This very general scenario is especially relevant to dilute Bose-Einstein condensates, for which ambitious control schemes have been based on the powerful Gross-Pitaevskii mean field theory. Since this theory breaks down on logarithmically short time scales in the presence of dynamical instabilities, an interval of instabilities introduces quantum corrections, which may possibly derail a control scheme. To provide a widely applicable theory for such quantum corrections, this paper solves a general problem of time-dependent quantum mechanical dynamical instability, by modelling it as a second-quantized analogue of a Landau-Zener avoided crossing: a `twisted crossing.
We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation and annihilation operators of quantum mechanics - and U(L_H), the enveloping algebra of the Heisenberg Lie algebra L_H. We show explicitly how G may be endowed with the structure of a Hopf algebra, which is also mirrored in the structure of U(L_H). While both H and U(L_H) are images of G, the algebra G has a richer structure and therefore embodies a finer combinatorial realization of the creation-annihilation system, of which it provides a concrete model.
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We show how the nonlinear system may appear from different physical models. We focus our attention on the large time behavior of the solution. We show the existence of a nonlinear scattering operator, which is reminiscent of long range scattering for the nonlinear Schrodinger equation, and which can be compared with its linear counterpart.
A simple mechanical analog describing Landau-Zener tunneling effect is proposed using two weakly coupled chains of nonlinear oscillators with gradually decreasing (first chain) and increasing (second chain) masses. The model allows to investigate nonlinear generalization of Landau-Zener tunneling effect considering soliton propagation and tunneling between the chains. It is shown that soliton tunneling characteristics become drastically dependent on its amplitude in nonlinear regime. The validity of the developed tunneling theory is justified via comparison with direct numerical simulations on oscillator ladder system.
We analyze the influence of classical Gaussian noise on Landau-Zener transitions during a two-level crossing in a time-dependent regular external field. Transition probabilities and coherence factors become random due to the noise. We calculate their two-time correlation functions, which describe the response of this two-level system to a weak external pulse signal. The spectrum and intensity of the magnetic response are derived. Although fluctuations are of the same order of magnitude as averages, the results is obtained in an analytic form.
We study electronic instabilities of a kagome metal with a Fermi energy close to saddle points at the hexagonal Brillouin zone face centers. Using parquet renormalization group, we determine the leading and subleading instabilities, finding superconducting, charge, orbital moment, and spin density waves. We then derive and use Landau theory to discuss how different primary density wave orders give rise to charge density wave modulations, as seen in the AV$_3$Sb$_5$ family, with A=K,Rb,Cs. The results provide strong constraints on the mechanism of charge ordering and how it can be further refined from existing and future experiments.