Do you want to publish a course? Click here

Roughness of Interfacial Crack Front: Correlated Percolation in the Damage Zone

67   0   0.0 ( 0 )
 Added by Alex Hansen
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the roughness exponent zeta of an in-plane crack front slowly propagating along a heterogeneous interface embeded in a elastic body, is in full agreement with a correlated percolation problem in a linear gradient. We obtain zeta=nu/(1+nu) where nu is the correlation length critical exponent. We develop an elastic brittle model based on both the 3D Green function in an elastic half-space and a discrete interface of brittle fibers and find numerically that nu=1.5, We conjecture it to be 3/2. This yields zeta=3/5. We also obtain by direct numerical simulations zeta=0.6 in excellent agreement with our prediction. This modelling is for the first time in close agreement with experimental observations.



rate research

Read More

We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the fracture process being a correlated percolation process in a self-generated quadratic damage gradient. We use the quasi-static two-dimensional fuse model as a paradigm of a fracture model. We measure for this model, that exhibits a correlated percolation process, the correlation length exponent nu approximately equal to 1.35 and conjecture it to be equal to that of uncorrelated percolation, 4/3. We then show that the roughness exponent in the fuse model is zeta = 2 nu/(1+2 nu)= 8/11. This is in accordance with the numerical value zeta=0.75. As for three-dimensional brittle fractures, a mean-field theory gives nu=2, leading to zeta=4/5 in full accordance with the universally observed value zeta =0.80.
304 - Henry Proudhon 2007
This paper presents an experimental study of the fretting crack nucleation threshold, expressed in terms of loading conditions, with a cylinder/plane contact. The studied material is a damage tolerant aluminium alloy widely used in the aerospace application. Since in industrial problems, the surface quality is often variable, the impact of a unidirectional roughness is investigated via varying the roughness of the counter body in the fretting experiments. As expected, experimental results show a large effect of the contact roughness on the crack nucleation conditions. Rationalisation of the crack nucleation boundary independently of the studied roughnesses was successfully obtained by introducing the concept of effective contact area. This does show that the fretting crack nucleation of the studied material can be efficiently described by the local effective loadings inside the contact. Analytical prediction of the crack nucleation is presented with the Smith-Watson-Topper (SWT) parameter and size effect is also studied and discussed.
Cluster concepts have been extremely useful in elucidating many problems in physics. Percolation theory provides a generic framework to study the behavior of the cluster distribution. In most cases the theory predicts a geometrical transition at the percolation threshold, characterized in the percolative phase by the presence of a spanning cluster, which becomes infinite in the thermodynamic limit. Standard percolation usually deals with the problem when the constitutive elements of the clusters are randomly distributed. However correlations cannot always be neglected. In this case correlated percolation is the appropriate theory to study such systems. The origin of correlated percolation could be dated back to 1937 when Mayer [1] proposed a theory to describe the condensation from a gas to a liquid in terms of mathematical clusters (for a review of cluster theory in simple fluids see [2]). The location for the divergence of the size of these clusters was interpreted as the condensation transition from a gas to a liquid. One of the major drawback of the theory was that the cluster number for some values of thermodynamic parameters could become negative. As a consequence the clusters did not have any physical interpretation [3]. This theory was followed by Frenkels phenomenological model [4], in which the fluid was considered as made of non interacting physical clusters with a given free energy. This model was later improved by Fisher [3], who proposed a different free energy for the clusters, now called droplets, and consequently a different scaling form for the droplet size distribution. This distribution, which depends on two geometrical parameters, has the nice feature that the mean droplet size exhibits a divergence at the liquid-gas critical point.
We reconsider the problem of percolation on an equilibrium random network with degree-degree correlations between nearest-neighboring vertices focusing on critical singularities at a percolation threshold. We obtain criteria for degree-degree correlations to be irrelevant for critical singularities. We present examples of networks in which assortative and disassortative mixing leads to unusual percolation properties and new critical exponents.
257 - L. Cao , J. M. Schwarz 2012
The recent proliferation of correlated percolation models---models where the addition of edges/vertices is no longer independent of other edges/vertices---has been motivated by the quest to find discontinuous percolation transitions. The leader in this proliferation is what is known as explosive percolation. A recent proof demonstrates that a large class of explosive percolation-type models does not, in fact, exhibit a discontinuous transition[O. Riordan and L. Warnke, Science, {bf 333}, 322 (2011)]. We, on the other hand, discuss several correlated percolation models, the $k$-core model on random graphs, and the spiral and counter-balance models in two-dimensions, all exhibiting discontinuous transitions in an effort to identify the needed ingredients for such a transition. We then construct mixtures of these models to interpolate between a continuous transition and a discontinuous transition to search for a tricritical point. Using a powerful rate equation approach, we demonstrate that a mixture of $k=2$-core and $k=3$-core vertices on the random graph exhibits a tricritical point. However, for a mixture of $k$-core and counter-balance vertices, heuristic arguments and numerics suggest that there is a line of continuous transitions as the fraction of counter-balance vertices is increased from zero with the line ending at a discontinuous transition only when all vertices are counter-balance. Our results may have potential implications for glassy systems and a recent experiment on shearing a system of frictional particles to induce what is known as jamming.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا