Parallel dynamics of the fully connected Blume-Emery-Griffiths neural network


Abstract in English

The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied at zero temperature for arbitrary using a probabilistic approach. A recursive scheme is found determining the complete time evolution of the order parameters, taking into account all feedback correlations. It is based upon the evolution of the distribution of the local field, the structure of which is determined in detail. As an illustrative example, explicit analytic formula are given for the first few time steps of the dynamics. Furthermore, equilibrium fixed-point equations are derived and compared with the thermodynamic approach. The analytic results find excellent confirmation in extensive numerical simulations.

Download