We present an experimental investigation of the probability distribution of normal contact forces, $P(F)$, at the bottom boundary of static three dimensional packings of compressible granular materials. We find that the degree of deformation of individual grains plays a large role in determining the form of this distribution. For small amounts of deformation we find a small peak in $P(F)$ below the mean force with an exponential tail for forces larger than the mean force. As the degree of deformation is increased the peak at the mean force grows in height and the slope of the exponential tail increases.
We investigate how forces spread through frictionless granular packs at the jamming transition. Previous work has indicated that such packs are isostatic, and thus obey a null stress law which, independent of the packing history, causes rays of stress to propagate away from a point force at oblique angles. Prior verifications of the null stress law have used a sequential packing method which yields packs with anisotropic packing histories. We create packs without this anisotropy, and then later break the symmetry by adding a boundary. Our isotropic packs are very sensitive, and their responses to point forces diverge wildly, indicating that they cannot be described by any continuum stress model. We stabilize the packs by supplying an additional boundary, which makes the response much more regular. The response of the stabilized packs resembles what one would expect in a hyperstatic pack, despite the isostatic bulk. The expected stress rays characteristic of null stress behavior are not present. This suggests that isostatic packs do not need to obey a null stress condition. We argue that the rays may arise instead from more simple geometric considerations, such as preferred contact angles between beads.
The kinetic energy of a freely cooling granular gas decreases as a power law $t^{-theta}$ at large times $t$. Two theoretical conjectures exist for the exponent $theta$. One based on ballistic aggregation of compact spherical aggregates predicts $theta= 2d/(d+2)$ in $d$ dimensions. The other based on Burgers equation describing anisotropic, extended clusters predicts $theta=d/2$ when $2le d le 4$. We do extensive simulations in three dimensions to find that while $theta$ is as predicted by ballistic aggregation, the cluster statistics and velocity distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a Burgers equation description.
We present a systematic investigation of the distribution of normal forces at the boundaries of static packings of spheres. A new method for the efficient construction of large hexagonal-close-packed crystals is introduced and used to study the effect of spatial ordering on the distribution of forces. Under uniaxial compression we find that the form for the probability distribution of normal forces between particles does not depend strongly on crystallinity or inter-particle friction. In all cases the distribution decays exponentially at large forces and shows a plateau or possibly a small peak near the average force but does not tend to zero at small forces.
Understanding granular materials aging poses a substantial challenge: Grain contacts form networks with complex topologies, and granular flow is far from equilibrium. In this letter, we experimentally measure a three-dimensional granular systems reversibility and aging under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains translations and three-dimensional rotations with accuracy sufficient to infer contact-point sliding and rolling. Our observations reveal unique roles played by three-dimensional rotations in granular flow, aging, and energy dissipation. First, we find that granular rotations dominate the bulk dynamics, penetrating more deeply into the granular material than translations do. Second, sliding and rolling do not exhibit aging across the experiment, unlike translations. Third, aging appears not to minimize energy dissipation, according to our experimental measurements of rotations, combined with soft-sphere simulations. The experimental tools, analytical techniques, and observations that we introduce expose all the degrees of freedom of the far-from-equilibrium dynamics of granular flow.
We have made experimental observations of the force networks within a two-dimensional granular silo similar to the classical system of Janssen. Models like that of Janssen predict that pressure within a silo saturates with depth as the result of vertical forces being redirected to the walls of the silo where they can then be carried by friction. By averaging ensembles of experimentally-obtained force networks in different ways, we compare the observed behavior with various predictions for granular silos. We identify several differences between the mean behavior in our system and that predicted by Janssen-like models: We find that the redirection parameter describing how the force network transfers vertical forces to the walls varies with depth. We find that changes in the preparation of the material can cause the pressure within the silo to either saturate or to continue building with depth. Most strikingly, we observe a non-linear response to overloads applied to the top of the material in the silo. For larger overloads we observe the previously reported giant overshoot effect where overload pressure decays only after an initial increase [G. Ovarlez et al., Phys. Rev. E 67, 060302(R) (2003)]. For smaller overloads we find that additional pressure propagates to great depth. This effect depends on the particle stiffness, as given for instance by the Youngs modulus, E, of the material from which the particles are made. Important measures include E, the unscreened hydrostatic pressure, and the applied load. These experiments suggest that when the load and the particle weight are comparable, particle elasticity acts to stabilize the force network, allowing non-linear network effects to be seen in the mean behavior.
J. Michael Erikson
,Nathan W. Mueggenburg
,Heinrich M. Jaeger
.
(2002)
.
"Force distributions in three dimensional compressible granular packs"
.
Nathan W. Mueggenburg
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا