Do you want to publish a course? Click here

Mean field effects in a trapped classical gas

65   0   0.0 ( 0 )
 Added by Guery-Odelin
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.



rate research

Read More

Universal scaling of entanglement estimators of critical quantum systems has drawn a lot of attention in the past. Recent studies indicate that similar universal properties can be found for bipartite information estimators of classical systems near phase transitions, opening a new direction in the study of critical phenomena. We explore this subject by studying the information estimators of classical spin chains with general mean-field interactions. In our explicit analysis of two different bipartite information estimators in the canonical ensemble we find that, away from criticality both the estimators remain finite in the thermodynamic limit. On the other hand, along the critical line there is a logarithmic divergence with increasing system-size. The coefficient of the logarithm is fully determined by the mean-field interaction and it is the same for the class of models we consider. The scaling function, however, depends on the details of each model. In addition, we study the information estimators in the micro-canonical ensemble, where they are shown to exhibit a different universal behavior. We verify our results using numerical calculations of two specific cases of the general Hamiltonian.
For a mean-field classical spin system exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase space evolution according to the Vlasov equation the values of the critical exponents describing power-law behavior of response to a small external field. The exponent values so obtained significantly differ from the ones obtained on the basis of an analysis of the static phase-space distribution, with no reference to dynamics. This work serves as an illustration that cautions against relying on a static approach, with no reference to the dynamical evolution, to extract critical exponent values for mean-field systems.
353 - R. Haussmann , W. Zwerger 2009
Thermodynamic properties of an ultracold Fermi gas in a harmonic trap are calculated within a local density approximation, using a conserving many-body formalism for the BCS to BEC crossover problem, which has been developed by Haussmann et al. [Phys. Rev. A 75, 023610 (2007)]. We focus on the unitary regime near a Feshbach resonance and determine the local density and entropy profiles and the global entropy S(E) as a function of the total energy E. Our results are in good agreement with both experimental data and previous analytical and numerical results for the thermodynamics of the unitary Fermi gas. The value of the Bertsch parameter at T=0 and the superfluid transition temperature, however, differ appreciably. We show that, well in the superfluid regime, removal of atoms near the cloud edge enables cooling far below temperatures that have been reached so far.
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semi-classical and quantum calculations in the thermal properties of such a system. To check this claim, we calculate the heat capacity and isothermal compressibility of this system semi-classically as well as from the quantum spectrum of the density of states. The quantum calculation is done for a finite number of particles. We find good agreement between the two calculations when the number of particles are taken to be large. We also find that this system has the same thermal properties as an ideal five dimensional Bose gas.
We apply the Kovacs experimental protocol to classical and quantum p-spin models. We show that these models have memory effects as those observed experimentally in super-cooled polymer melts. We discuss our results in connection to other classical models that capture memory effects. We propose that a similar protocol applied to quantum glassy systems might be useful to understand their dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا