Doping dependence of the electronic Raman spectra in cuprates


Abstract in English

We report electronic Raman scattering measurements on Bi$_2$Sr$_2$(Y$_{1-x}$Ca$_x$)Cu$_2$O$_{8+delta}$ single crystals at different doping levels. The dependence of the spectra on doping and on incoming photon energy is analyzed for different polarization geometries, in the superconducting and in the normal state. We find the scaling behavior of the superconductivity pair-breaking peak with the carrier concentration to be very different in B$_{1g}$ and B$_{2g}$ geometries. Also, we do not find evidence of any significant variation of the lineshape of the spectra in the overdoped region in both symmetries, while we observe a reduction of the intensity in B$_{2g}$ upon decreasing photon energies. The normal state data are analyzed in terms of the memory-function approach. The quasiparticle relaxation rates in the two symmetries display a dependence on energy and temperature which varies with the doping level.

Download